[go: up one dir, main page]

login
A007346
Order of group generated by perfect shuffles of 2n cards.
(Formerly M1909)
5
2, 8, 24, 24, 1920, 7680, 322560, 64, 92897280, 3715891200, 40874803200, 194641920, 25505877196800, 1428329123020800, 21424936845312000, 160, 23310331287699456000, 1678343852714360832000, 31888533201572855808000
OFFSET
1,1
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Steve Butler, Persi Diaconis and R. L. Graham, The mathematics of the flip and horseshoe shuffles, arXiv:1412.8533 [math.CO], 2014.
Steve Butler, Persi Diaconis and R. L. Graham, The mathematics of the flip and horseshoe shuffles, The American Mathematical Monthly 123.6 (2016): 542-556.
P. Diaconis, R. L. Graham and W. M. Kantor, The mathematics of perfect shuffles, Adv. Appl. Math. 4 (2) (1983) 175-196.
FORMULA
See Maple program. - N. J. A. Sloane, Jun 20 2016
MAPLE
f:=proc(n) local k, i, np;
if n=1 then 2
elif (n mod 2) = 1 then n!*2^(n-1)
elif n=6 then 2^9*3*5
elif n=12 then 2^17*3^3*5*11
elif n=2 then 8
elif (n mod 4)=2 then n!*2^n
else
np:=n; k:=1;
for i while (np mod 2) = 0 do
np:=np/2; k:=k+1; od;
if (n=2^(k-1)) then k*2^k else n!*2^(n-2); fi;
fi;
end;
[seq(f(n), n=1..64)]; # N. J. A. Sloane, Jun 20 2016
MATHEMATICA
a[1] = 2; a[2] = 8; a[n_] := With[{m = 2^n*n!}, Which[Mod[n, 4] == 2, If[n == 6, m/6, m], Mod[n, 4] == 1, m/2, Mod[n, 4] == 3, m/2, True, If[n == 2^IntegerExponent[n, 2], 2*n*(IntegerExponent[n, 2] + 1), If[n == 12, m/(2*7!), m/4]]]]; Table[a[n], {n, 1, 19}](* Jean-François Alcover, Feb 17 2012, after Franklin T. Adams-Watters *)
PROG
(PARI) A007346(n) = local(M); M=2^n*n!; if(n%4==2, if(n==2, 8, if(n==6, M/6, M)), if(n%4==1, if(n==1, 2, M/2), if(n%4==3, M/2, if(n==2^valuation(n, 2), 2*n*(valuation(n, 2)+1), if(n==12, M/(7!*2), M/4))))) \\ Franklin T. Adams-Watters, Nov 30 2006
CROSSREFS
Bisections give A002671, A274303.
Sequence in context: A138387 A374364 A354176 * A062247 A284951 A357635
KEYWORD
nonn,nice,easy
EXTENSIONS
Corrected and extended by Franklin T. Adams-Watters, Nov 30 2006
STATUS
approved