OFFSET
1,2
COMMENTS
Partitions of this type are also called non-biquanimous partitions. - Gus Wiseman, Apr 19 2024
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 1..140 (terms 1..89 from Alois P. Heinz)
P. Erdős, J. L. Nicolas and A. Sárközy, On the number of partitions of n without a given subsum (I), Discrete Math., 75 (1989), 155-166 = Annals Discrete Math. Vol. 43, Graph Theory and Combinatorics 1988, ed. B. Bollobas.
EXAMPLE
From Gus Wiseman, Apr 19 2024: (Start)
The a(1) = 1 through a(5) = 17 partitions (A = 10):
(2) (4) (6) (8) (A)
(31) (42) (53) (64)
(51) (62) (73)
(222) (71) (82)
(411) (332) (91)
(521) (433)
(611) (442)
(5111) (622)
(631)
(721)
(811)
(3331)
(4222)
(6211)
(7111)
(22222)
(61111)
(End)
MAPLE
b:= proc(n, i, s) option remember;
`if`(0 in s or n in s, 0, `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, s)+
`if`(i<=n, b(n-i, i, select(y-> 0<=y and y<=n-i,
map(x-> [x, x-i][], s))), 0))))
end:
a:= n-> b(2*n, 2*n, {n}):
seq(a(n), n=1..25); # Alois P. Heinz, Jul 10 2012
MATHEMATICA
b[n_, i_, s_] := b[n, i, s] = If[MemberQ[s, 0 | n], 0, If[n == 0, 1, If[i < 1, 0, b[n, i-1, s] + If[i <= n, b[n-i, i, Select[Flatten[Transpose[{s, s-i}]], 0 <= # <= n-i &]], 0]]]]; a[n_] := b[2*n, 2*n, {n}]; Table[Print[an = a[n]]; an, {n, 1, 25}] (* Jean-François Alcover, Nov 12 2013, after Alois P. Heinz *)
PROG
(Python)
from itertools import combinations_with_replacement
from collections import Counter
from sympy import npartitions
from sympy.utilities.iterables import partitions
def A006827(n): return npartitions(n<<1)-len({tuple(sorted((p+q).items())) for p, q in combinations_with_replacement(tuple(Counter(p) for p in partitions(n)), 2)}) # Chai Wah Wu, Sep 20 2023
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
More terms from Don Reble, Nov 03 2001
More terms from Alois P. Heinz, Jul 10 2012
STATUS
approved