OFFSET
0,1
COMMENTS
The hexagonal lattice is the familiar 2-dimensional lattice in which each point has 6 neighbors. This is sometimes called the triangular lattice.
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
On page 111 of Conway and Sloane is "If the origin is moved to a deep hole the theta series is Theta_{hex+[1]}(z) = theta_2(z) psi_6(3z) + theta_3(z) psi_3(3z) = 3 q^{1/3} + 3 q^{4/3} + 6 q^{7/3} + 6 q^{13/3} + ... (63)" where the psi_k() for integer k is defined on page 103 equation (11) as psi_k(z) = e^{Pi i/z^2} theta_3(Pi z/k | z) = Sum_{m in Z} q^{(m + 1/k)^2}. - Michael Somos, Sep 10 2018
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 111.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..10000 (terms 0..1000 from T. D. Noe)
J. M. Borwein and P. B. Borwein, A cubic counterpart of Jacobi's identity and the AGM, Trans. Amer. Math. Soc., 323 (1991), no. 2, 691-701. MR1010408 (91e:33012) see page 695.
Christian Kassel and Christophe Reutenauer, The zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1505.07229v3 [math.AG], 2015. [Note that a later version of this paper has a different title and different contents, and the number-theoretical part of the paper was moved to the publication which is next in this list.]
Christian Kassel and Christophe Reutenauer, Complete determination of the zeta function of the Hilbert scheme of n points on a two-dimensional torus, arXiv:1610.07793 [math.NT], 2016.
G. Nebe and N. J. A. Sloane, Home page for hexagonal (or triangular) lattice A2
N. J. A. Sloane and B. K. Teo, Theta series and magic numbers for close-packed spherical clusters, J. Chem. Phys. 83 (1985) 6520-6534.
Michael Somos, Introduction to Ramanujan theta functions
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q^(-1/3) * 3 * eta(q^3)^3 / eta(q) in powers of q.
Expansion of q^(-1/3) * c(q) in powers of q where c(q) is the third cubic AGM theta function.
Given g.f. A(x), then B(x) = x*A(x^3) satisfies 0 = f(B(x), B(x^2), B(x^4)) where f(u, v, w) = v^3 + 2*u*w^2 - u^2*w. - Michael Somos, Aug 15 2006
G.f.: 3 Product_{k>0} (1-q^(3k))^3/(1-q^k).
G.f.: Sum_{u,v in Z} x^(u*u + u*v + v*v + u + v). - Michael Somos, Jul 19 2014
Expansion of 2 * psi(x^2) * f(x^2, x^4) + phi(x) * f(x^1, x^5) in powers of x where phi(), psi() are Ramanujan theta functions and f(, ) is Ramanujan's general theta function. - Michael Somos, Sep 07 2018
Sum_{k=1..n} a(k) ~ 2*Pi*n/sqrt(3). - Vaclav Kotesovec, Dec 17 2022
EXAMPLE
G.f. = 3 + 3*x + 6*x^2 + 6*x^4 + 3*x^5 + 6*x^6 + 3*x^8 + 6*x^9 + 6*x^10 + ...
G.f. = 3*q + 3*q^4 + 6*q^7 + 6*q^13 + 3*q^16 + 6*q^19 + 3*q^25 + 6*q^28 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ 3 QPochhammer[ q^3]^3 / QPochhammer[ q], {q, 0, n}]; (* Michael Somos, Jul 19 2014 *)
PROG
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( 3 * eta(x^3 + A)^3 / eta(x + A), n))}; /* Michael Somos, Aug 15 2006 */
(Magma) Basis( ModularForms( Gamma1(9), 1), 302)[2] * 3; /* Michael Somos, Jul 19 2014 */
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved