[go: up one dir, main page]

login
A005879
Theta series of D_4 lattice with respect to deep hole.
(Formerly M4509)
4
8, 32, 48, 64, 104, 96, 112, 192, 144, 160, 256, 192, 248, 320, 240, 256, 384, 384, 304, 448, 336, 352, 624, 384, 456, 576, 432, 576, 640, 480, 496, 832, 672, 544, 768, 576, 592, 992, 768, 640, 968, 672, 864, 960, 720, 896, 1024, 960, 784, 1248, 816, 832, 1536
OFFSET
0,1
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
The D_4 lattice is the set of all integer quadruples [a, b, c, d] where a + b + c + d is even. The deep holes are quadruples [a, b, c, d] where each coordinate is half an odd integer and where a + b + c + d is even. - Michael Somos, May 23 2012
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 118.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
Expansion of Jacobi theta_2(q)^4/(2q) in powers of q^2. - Michael Somos, Apr 11 2004
Expansion of q^(-1/2) * 8 * (eta(q^2)^2 / eta(q))^4 in powers of q. - Michael Somos, Apr 11 2004
Expansion of 8 * psi(x)^4 in powers of x where psi() is a Ramanujan theta function. - Michael Somos, May 23 2012
Expansion of (phi(q)^4 - phi(-q)^4) / (2 * q) in powers of q^2. - Michael Somos, May 23 2012
G.f.: 8 * (Product_{k>0} (1 - x^k) * (1 + x^k)^2)^4. - Michael Somos, Apr 11 2004
a(n) = 8 * A008438(n) = 4 * A005880(n) = A000118(2*n + 1) = - A096727(2*n + 1). - Michael Somos, Nov 01 2006
EXAMPLE
8 + 32*x + 48*x^2 + 64*x^3 + 104*x^4 + 96*x^5 + 112*x^6 + 192*x^7 + ...
8*q + 32*q^3 + 48*q^5 + 64*q^7 + 104*q^9 + 96*q^11 + 112*q^13 + ...
.
For n = 2 the objects counted are the ways to represent the integer 5 = (2*n+1) as a sum of 4 squares, 0 and negative numbers allowed.
[-2,-1,0,0], [-2,0,-1,0], [-2,0,0,-1], [-2,0,0,1], [-2,0,1,0], [-2,1,0,0],
[-1,-2,0,0], [-1,0,-2,0], [-1,0,0,-2], [-1,0,0,2], [-1,0,2,0], [-1,2,0,0],
[0,-2,-1,0], [0,-2,0,-1], [0,-2,0,1], [0,-2,1,0], [0,-1,-2,0], [0,-1,0,-2],
[0,-1,0,2], [0,-1,2,0], [0,0,-2,-1], [0,0,-2,1], [0,0,-1,-2], [0,0,-1,2],
[0,0,1,-2], [0,0,1,2], [0,0,2,-1], [0,0,2,1], [0,1,-2,0], [0,1,0,-2],
[0,1,0,2], [0,1,2,0], [0,2,-1,0], [0,2,0,-1], [0,2,0,1], [0,2,1,0],
[1,-2,0,0], [1,0,-2,0], [1,0,0,-2], [1,0,0,2], [1,0,2,0], [1,2,0,0],
[2,-1,0,0], [2,0,-1,0], [2,0,0,-1], [2,0,0,1], [2,0,1,0], [2,1,0,0].
- Peter Luschny, Nov 03 2015
MAPLE
S:= series(JacobiTheta2(0, q)^4/(2*q), q, 202):
seq(coeff(S, q, 2*j), j=0..100); # Robert Israel, Nov 03 2015
MATHEMATICA
(* a(n) gives the number of ways to represent the integer 2n+1 as a sum of 4 squares *) a[n_] := SquaresR[4, 2n+1]; Table[a[n], {n, 0, 52}] (* Jean-François Alcover, Nov 03 2015 *)
terms = 53; QP = QPochhammer; s = 8 QP[q^2]^8/QP[q]^4 + O[q]^terms; CoefficientList[s, q] (* Jean-François Alcover, Jul 07 2017, after Michael Somos *)
PROG
(PARI) {a(n) = if( n<0, 0, 8 * sigma(2*n + 1))} /* Michael Somos, Apr 11 2004 */
(PARI) q='q+O('q^66); Vec(8*(eta(q^2)^2/eta(q))^4) \\ Joerg Arndt, Nov 03 2015
CROSSREFS
KEYWORD
nonn,easy,nice
STATUS
approved