[go: up one dir, main page]

login
A005753
Number of rooted identity matched trees with n nodes.
(Formerly M1514)
12
1, 2, 5, 18, 66, 266, 1111, 4792, 21124, 94888, 432415, 1994828, 9296712, 43706722, 207030398, 987130456, 4733961435, 22819241034, 110500644857, 537295738556, 2622248720234, 12840953621208, 63074566121245, 310693364823376, 1534374047239554, 7595642577152762
OFFSET
1,2
COMMENTS
Also number of rooted identity trees with n nodes and 2-colored non-root nodes. - Christian G. Bower, Apr 15 1998
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
FORMULA
G.f.: x*Product_{n>=1} (1 + x^n)^(2*a(n)) = Sum_{n>=1} a(n)*x^n. - Paul D. Hanna, Dec 31 2011
a(n) ~ c * d^n / n^(3/2), where d = A246312 = 5.249032491228170579164952216..., c = 0.192066288645200371237879149260484794708740197522264442948290580404909605849... - Vaclav Kotesovec, Aug 25 2014, updated Dec 26 2020
G.f. A(x) satisfies: A(x) = x*exp(2*Sum_{k>=1} (-1)^(k+1)*A(x^k)/k). - Ilya Gutkovskiy, Apr 13 2019
EXAMPLE
G.f.: A(x) = x + 2*x^2 + 5*x^3 + 18*x^4 + 66*x^5 + 266*x^6 + ...
where A(x) = x*(1+x)^2*(1+x^2)^4*(1+x^3)^10*(1+x^4)^36*(1+x^5)^132*... (the exponents are A038077(n), n>=1).
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(2*a(i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> `if`(n=1, 1, b((n-1)$2)):
seq(a(n), n=1..40); # Alois P. Heinz, Aug 01 2013
MATHEMATICA
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[Binomial[2*a[i], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; a[n_] := If[n == 1, 1, b[n-1, n-1]]; Table[a[n] // FullSimplify, {n, 1, 30}] (* Jean-François Alcover, Mar 17 2014, after Alois P. Heinz *)
PROG
(PARI) {a(n)=polcoeff(x*prod(k=1, n-1, (1+x^k+x*O(x^n))^(2*a(k))), n)} /* Paul D. Hanna */
CROSSREFS
Column k=2 of A255517.
Sequence in context: A150017 A150018 A150019 * A150020 A144721 A150021
KEYWORD
nonn,eigen
STATUS
approved