[go: up one dir, main page]

login
A005365
Hoggatt sequence with parameter d=7.
(Formerly M1976)
7
1, 2, 10, 74, 782, 10562, 175826, 3457742, 78408332, 2005691690, 56970282514, 1772967273794, 59814500606018, 2168062920325850, 83802728579860658, 3432438439271783026, 148165335791410936770, 6708873999658599592672
OFFSET
0,2
COMMENTS
Let V be the vector representation of SL(7) (of dimension 7) and let E be the exterior algebra of V (of dimension 128). Then a(n) is the dimension of the subspace of invariant tensors in the n-th tensor power of E. - Bruce Westbury, Feb 03 2021
This is the number of 7-vicious walkers (aka vicious 7-watermelons) - see Essam and Guttmann (1995). This is the 7-walker analog of A001181. - N. J. A. Sloane, Mar 27 2021
REFERENCES
D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt sums and Hoggatt triangles, in G. E. Bergum et al., editors, Applications of Fibonacci Numbers: Proc. Third Internat. Conf. on Fibonacci Numbers and Their Applications, Pisa, Jul 25-29, 1988. Kluwer, Dordrecht, Vol. 3, 1990, pp. 77-88.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. W. Essam and A. J. Guttmann, Vicious walkers and directed polymer networks in general dimensions, Physical Review E, 52(6), (1995) pp. 5849-5862. See (60) and (63).
D. C. Fielder and C. O. Alford, An investigation of sequences derived from Hoggatt Sums and Hoggatt Triangles, Application of Fibonacci Numbers, 3 (1990) 77-88. Proceedings of 'The Third Annual Conference on Fibonacci Numbers and Their Applications,' Pisa, Italy, July 25-29, 1988. (Annotated scanned copy)
FORMULA
a(n) = Hypergeometric7F6([-6-n, -5-n, -4-n, -3-n, -2-n, -1-n, -n], [2, 3, 4, 5, 6, 7], -1). - Richard L. Ollerton, Sep 13 2006
a(n) = S(7,n) where S(d,n) is defined in A005364. - Sean A. Irvine, May 29 2016
a(n) ~ 6075 * 2^(7*n + 57) / (sqrt(7) * Pi^3 * n^24). - Vaclav Kotesovec, Apr 01 2021
MATHEMATICA
A005365[n_]:=HypergeometricPFQ[{-6-n, -5-n, -4-n, -3-n, -2-n, -1-n, -n}, {2, 3, 4, 5, 6, 7}, -1] (* Richard L. Ollerton, Sep 13 2006 *)
PROG
(PARI) a(n) = my(d=7); 1 + sum(h=0, n-1, prod(k=0, h, binomial(n+d-1-k, d) / binomial(d + k, d))); \\ Michel Marcus, Feb 08 2021
(Magma)
A142467:= func< n, k | (&*[Binomial(n+j, k)/Binomial(k+j, k): j in [0..6]]) >;
A005365:= func< n | (&+[A142467(n, k): k in [0..n]]) >;
[A005365(n): n in [0..40]]; // G. C. Greubel, Nov 13 2022
(SageMath)
def A005365(n): return simplify(hypergeometric([-6-n, -5-n, -4-n, -3-n, -2-n, -1-n, -n], [2, 3, 4, 5, 6, 7], -1))
[A005365(n) for n in range(51)] # G. C. Greubel, Nov 13 2022
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, May 29 2016
STATUS
approved