[go: up one dir, main page]

login
A005175
Number of trees of subsets of an n-set.
(Formerly M3173)
1
0, 0, 3, 131, 1830, 16990, 127953, 851361, 5231460, 30459980, 170761503, 931484191, 4979773890, 26223530970, 136522672653, 704553794621, 3611494269120, 18415268221960, 93516225653403, 473366777478651, 2390054857197150, 12043393363764950, 60590148885015753
OFFSET
1,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
F. R. McMorris and T. Zaslavsky, The number of cladistic characters, Math. Biosciences, 54 (1981), 3-10.
F. R. McMorris and T. Zaslavsky, The number of cladistic characters, Math. Biosciences, 54 (1981), 3-10. [Annotated scanned copy]
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
FORMULA
a(n+1) = 3*(3^n - 2*2^n + 1)/2 + 113*(4^n - 3*3^n + 3*2^n - 1)/6 + 625*(5^n - 4*4^n + 6*3^n - 4*2^n + 1)/24. - formula fitted by John W. Layman
a(n) = (125/24) * 5^n - (64/3) * 4^n + (135/4)*3^n - (76/3) * 2^n + 209/24 proven in McMorris and Zaslavsky, matches Layman's formula with an offset of 1. - Sean A. Irvine, Apr 12 2016
E.g.f.: (1/24)*exp(x)*(-1 + exp(x))^2*(209 - 798*exp(x) + 625*exp(2*x)). - Ilya Gutkovskiy, Apr 12 2016
MAPLE
A005175:=-z**2*(3+86*z+120*z**2)/(z-1)/(4*z-1)/(3*z-1)/(2*z-1)/(5*z-1); # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
Table[(125/24) 5^n - (64/3) 4^n + (135/4) 3^n - (76/3) 2^n + 209/24, {n, 20}] (* Michael De Vlieger, Apr 12 2016 *)
CROSSREFS
Sequence in context: A048434 A249379 A139943 * A347985 A082439 A082622
KEYWORD
nonn
STATUS
approved