[go: up one dir, main page]

login
A004793
a(1)=1, a(2)=3; a(n) is least k such that no three terms of a(1), a(2), ..., a(n-1), k form an arithmetic progression.
20
1, 3, 4, 6, 10, 12, 13, 15, 28, 30, 31, 33, 37, 39, 40, 42, 82, 84, 85, 87, 91, 93, 94, 96, 109, 111, 112, 114, 118, 120, 121, 123, 244, 246, 247, 249, 253, 255, 256, 258, 271, 273, 274, 276, 280, 282, 283, 285, 325, 327, 328, 330, 334, 336, 337, 339, 352, 354
OFFSET
1,2
LINKS
F. Iacobescu, Smarandache Partition Type and Other Sequences, Bull. Pure Appl. Sci. 16E, 237-240, 1997.
Eric Weisstein's World of Mathematics, Nonarithmetic Progression Sequence
FORMULA
a(n) = (3-n)/2 + 2*floor(n/2) + Sum_{k=1..n-1} 3^A007814(k)/2 = A003278(n) + [n is even], proved by Lawrence Sze, following a conjecture by Ralf Stephan.
a(n) = b(n-1), with b(0)=1, b(2n) = 3b(n) - 2 - 3[n odd], b(2n+1) = 3b(n)-3[n odd].
MAPLE
a:= proc(n) local m, r, b; m, r, b:= n-1, 2-irem(n, 2), 1;
while m>0 do r:= r+b*irem(m, 2, 'm'); b:= b*3 od; r
end:
seq(a(n), n=1..100); # Alois P. Heinz, Nov 02 2021
MATHEMATICA
Select[Range[1000], MatchQ[IntegerDigits[#-1, 3], {(0|1)..., 0|2}]&] (* Jean-François Alcover, Jan 13 2019, after Tanya Khovanova in A186776 *)
PROG
(PARI) v[1]=1; v[2]=3; for(n=3, 1000, f=2; m=v[n-1]+1; while(1, forstep(k=n-1, 1, -1, if(v[k]<(m+1)/2, f=1; break); for(l=1, k-1, if(m-v[k]==v[k]-v[l], f=0; break)); if(f<2, break)); if(!f, m=m+1; f=2); if(f==1, break)); v[n]=m) \\ Ralf Stephan
(PARI) a(n)=if(n<1, 1, if(n%2==0, 3*a(n/2)-2-3*((n/2)%2), 3*a((n-1)/2)-3*(((n-1)/2)%2))) \\ Ralf Stephan
CROSSREFS
Equals A186776(n)+1, A033160(n)-1, A033163(n)-2.
Row 1 of array in A093682.
Sequence in context: A322457 A137951 A082694 * A336909 A031132 A322165
KEYWORD
nonn,changed
EXTENSIONS
Rechecked by David W. Wilson, Jun 04 2002
STATUS
approved