[go: up one dir, main page]

login
A003717
Expansion of e.g.f. sin(tanh(x)) (odd powers only).
(Formerly M3143)
6
1, -3, 37, -959, 41641, -2693691, 241586893, -28607094455, 4315903789009, -807258131578995, 183184249105857781, -49548882107764546223, 15742588857552887269753, -5802682207845642276301995
OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
FORMULA
a(n) = (-1)^(n-1)*b(2*n-1), b(n) = sum(k=1..n,(1-(-1)^k)/k!*((-1)^(n-k)+1)* sum(j=k..n, binomial(j-1,k-1)*j!*2^(n-j-2)*(-1)^((n+k)/2+j)* Stirling2(n,j))). - Vladimir Kruchinin, Apr 21 2011
MATHEMATICA
Sin[ Tanh[ x ] ] (* Odd Part *)
With[{nn = 60}, Take[CoefficientList[Series[Sin[Tanh[x]], {x, 0, nn}], x] Range[0, nn - 1]!, {2, -1, 2}]] (* Vincenzo Librandi, Apr 11 2014 *)
PROG
(Maxima)
a(n):=(-1)^(n-1)*b(2*n-1);
b(n):=sum((1-(-1)^k)/k!*((-1)^(n-k)+1)*sum(binomial(j-1, k-1)*j!*2^(n-j-2)*(-1)^((n+k)/2+j)*stirling2(n, j), j, k, n), k, 1, n); /* Vladimir Kruchinin, Apr 21 2011 */
CROSSREFS
Sequence in context: A143639 A143412 A331656 * A354020 A201697 A274308
KEYWORD
sign
EXTENSIONS
Name edited by Michel Marcus, Jan 28 2018
STATUS
approved