[go: up one dir, main page]

login
A003690
Number of spanning trees in K_3 X P_n.
8
3, 75, 1728, 39675, 910803, 20908800, 479991603, 11018898075, 252954664128, 5806938376875, 133306628004003, 3060245505715200, 70252340003445603, 1612743574573533675, 37022849875187828928, 849912803554746531675, 19510971631883982399603
OFFSET
1,1
COMMENTS
Column 3 of A173958. The sequence a(n)/3 is linear divisibility sequence of the fourth order; it is the case P1 = 25, P2 = 46, Q = 1 of the three parameter family of divisibility sequences found by Williams and Guy. - Peter Bala, Apr 27 2014
REFERENCES
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Ars Combin. 49 (1998), 129-154.
LINKS
F. Faase, On the number of specific spanning subgraphs of the graphs G X P_n, Preliminary version of paper that appeared in Ars Combin. 49 (1998), 129-154.
P. Raff, Spanning Trees in Grid Graphs, arXiv:0809.2551 [math.CO], 2008. [From Paul Raff, Mar 06 2009]
P. Raff, Analysis of the Number of Spanning Trees of K_3 x P_n. Contains sequence, recurrence, generating function, and more. [From Paul Raff, Mar 06 2009] [broken link]
H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences, Integers, Volume 12A (2012) The John Selfridge Memorial Volume
FORMULA
a(n) = (A090731(n)-2)/7.
a(n) = 24*a(n-1) - 24*a(n-2) + a(n-3), n>3.
G.f.: 3*x*(1+x)/((1-x)*(1-23*x+x^2)). - R. J. Mathar, Dec 16 2008
a(n) = 3*(A004254(n))^2. - R. K. Guy, seqfan list, Mar 28 2009, - R. J. Mathar, Jun 03 2009
From Peter Bala, Apr 27 2014: (Start)
Product {n >= 2} (1 - 3/a(n)) = 1/2 + sqrt(21)/10.
a(n) = (2/7)*( T(n,23/2) - 1), where T(n,x) is the Chebyshev polynomial of the first kind.
a(n) = 3 * the bottom left entry of the 2 X 2 matrix T(n,M), where M is the 2 X 2 matrix [0, -23/2; 1, 25/2].
a(n) = 3*U(n-1,5/2)^2, where U(n,x) is the Chebyshev polynomial of the second kind.
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End)
a(n) = (-2+(2/(23+5*sqrt(21)))^n+(1/2*(23+5*sqrt(21)))^n)/7. - Colin Barker, Mar 06 2016
MATHEMATICA
CoefficientList[Series[3 (1 + x)/((1 - x) (1 - 23 x + x^2)), {x, 0, 20}], x] (* Vincenzo Librandi, Apr 28 2014 *)
PROG
(Magma) I:=[3, 75, 1728]; [n le 3 select I[n] else 24*Self(n-1)-24*Self(n-2)+Self(n-3): n in [1..30]]; // Vincenzo Librandi, Apr 28 2014
(PARI) Vec(3*x*(1+x)/((1-x)*(1-23*x+x^2)) + O(x^25)) \\ Colin Barker, Mar 06 2016
CROSSREFS
Cf. A100047, A173958 (column 3).
Sequence in context: A060869 A012491 A136328 * A230143 A228841 A361537
KEYWORD
nonn,easy
STATUS
approved