[go: up one dir, main page]

login
A003275
Values of phi(n) = phi(n+1).
(Formerly M1874)
5
1, 2, 8, 48, 80, 96, 128, 240, 288, 480, 1008, 1200, 1296, 1440, 1728, 2592, 2592, 4800, 5600, 6480, 8640, 11040, 12480, 14976, 19008, 19200, 22464, 24320, 24576, 21120, 28416, 27840, 25920, 32000, 32768, 36000, 47520, 52992, 60480, 59904, 79200, 89280, 96768
OFFSET
1,2
COMMENTS
In other words, consider n = 1,2,3,4,..., and if phi(n)=phi(n+1), add phi(n) to the sequence.
REFERENCES
R. K. Guy, Unsolved Problems Number Theory, Sect. B36.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
K. Miller, The equation phi(n) = phi(n+1), Unpublished M.S., ND..
K. Miller, Solutions of phi(n) = phi(n+1) for 1 <= n <= 500000. Unpublished, 1972. [ See Review, Math. Comp., Vol. 27, p. 447-448, 1973 ].
K. Miller, Solutions of phi(n) = phi(n+1) for 1 <= n <= 500000, Mathematics of Computation 27 (1973), 47-48. (Annotated scanned copy)
Leo Moser, Some equations involving Euler's totient function, Amer. Math. Monthly, 56 (1949), 22-23.
Eric Weisstein's World of Mathematics, Totient Function
FORMULA
a(n) = A000010(A001274(n)). - Reinhard Zumkeller, May 20 2014
MATHEMATICA
Cases[Split[Table[EulerPhi[k], {k, 1, 50000}]], {_, _}][[1;; 27, 1]] (* Jean-François Alcover, Mar 20 2011 *)
#[[1]]&/@Select[Partition[EulerPhi[Range[80000]], 2, 1], #[[1]]==#[[2]]&] (* Harvey P. Dale, Oct 03 2012 *)
SequenceCases[EulerPhi[Range[200000]], {x_, x_}][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 05 2019 *)
PROG
(Haskell)
a003275 = a000010 . fromIntegral . a001274
-- Reinhard Zumkeller, May 20 2014
CROSSREFS
Sequence in context: A199136 A181413 A358822 * A253665 A078558 A003032
KEYWORD
nonn,nice
STATUS
approved