OFFSET
1,2
COMMENTS
In other words, consider n = 1,2,3,4,..., and if phi(n)=phi(n+1), add phi(n) to the sequence.
REFERENCES
R. K. Guy, Unsolved Problems Number Theory, Sect. B36.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n=1..2567
K. Miller, The equation phi(n) = phi(n+1), Unpublished M.S., ND..
K. Miller, Solutions of phi(n) = phi(n+1) for 1 <= n <= 500000. Unpublished, 1972. [ See Review, Math. Comp., Vol. 27, p. 447-448, 1973 ].
K. Miller, Solutions of phi(n) = phi(n+1) for 1 <= n <= 500000, Mathematics of Computation 27 (1973), 47-48. (Annotated scanned copy)
Leo Moser, Some equations involving Euler's totient function, Amer. Math. Monthly, 56 (1949), 22-23.
Eric Weisstein's World of Mathematics, Totient Function
FORMULA
MATHEMATICA
Cases[Split[Table[EulerPhi[k], {k, 1, 50000}]], {_, _}][[1;; 27, 1]] (* Jean-François Alcover, Mar 20 2011 *)
#[[1]]&/@Select[Partition[EulerPhi[Range[80000]], 2, 1], #[[1]]==#[[2]]&] (* Harvey P. Dale, Oct 03 2012 *)
SequenceCases[EulerPhi[Range[200000]], {x_, x_}][[All, 1]] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Mar 05 2019 *)
PROG
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
STATUS
approved