[go: up one dir, main page]

login
A002760
Squares and cubes.
14
0, 1, 4, 8, 9, 16, 25, 27, 36, 49, 64, 81, 100, 121, 125, 144, 169, 196, 216, 225, 256, 289, 324, 343, 361, 400, 441, 484, 512, 529, 576, 625, 676, 729, 784, 841, 900, 961, 1000, 1024, 1089, 1156, 1225, 1296, 1331, 1369, 1444, 1521, 1600, 1681, 1728, 1764, 1849
OFFSET
1,3
COMMENTS
Catalan's Conjecture states that 8 and 9 are the only pair of consecutive numbers in this sequence. The conjecture was established in 2003 by Mihilescu.
Subsequence of A022549. - Reinhard Zumkeller, Jul 17 2010
REFERENCES
Clifford A. Pickover, A Passion for Mathematics, Wiley, 2005; see p. 68.
Clifford A. Pickover, The Math Book, Sterling, NY, 2009; see p. 236.
LINKS
Michael De Vlieger, Table of n, a(n) for n = 1..10443 (first 1000 terms from Zak Seidov)
Yuri F. Bilu, Catalan's Conjecture (After Mihilescu), Astérisque, No. 294, 1-26, 2004.
Yuri F. Bilu, Catalan Without Logarithmic Forms (after Bugeaud, Hanrot and Mihailescu), J. Théor. Nombres Bordeaux 17, 69-85, 2005.
David Masser, Alan Baker, arXiv:2010.10256 [math.HO], 2020. See p. 4.
Tauno Metsänkylä, Catalan's conjecture: another old Diophantine problem solved, Bull. Amer. Math. Soc. (NS), Vol. 41, No. 1 (2004), pp. 43-57.
Preda Mihǎilescu, A Class Number Free Criterion for Catalan's Conjecture, J. Number Th. 99 225-231, 2003.
Preda Mihǎilescu, Primary Cyclotomic Units and a Proof of Catalan's Conjecture, J. Reine angew. Math. 572 (2004): 167-195. MR 2076124.
Paulo Ribenboim, Catalan's Conjecture, Séminaire de Philosophie et Mathématiques, 6 (1994), p. 1-11.
Paulo Ribenboim, Catalan's Conjecture, Amer. Math. Monthly, Vol. 103(7) Aug-Sept 1996, pp. 529-538.
FORMULA
Sum_{n>=2} 1/a(n) = zeta(2) + zeta(3) - zeta(6). - Amiram Eldar, Dec 19 2020
MATHEMATICA
nMax=2000; Union[Range[0, nMax^(1/2)]^2, Range[0, nMax^(1/3)]^3] (* Vladimir Joseph Stephan Orlovsky, Apr 11 2011 *)
nxt[n_] := Min[ Floor[1 + Sqrt[n]]^2, Floor[1 + n^(1/3)]^3]; NestList[ nxt, 0, 55] (* Robert G. Wilson v, Aug 16 2014 *)
PROG
(Magma) [n: n in [0..1600] | IsIntegral(n^(1/3)) or IsIntegral(n^(1/2))]; // Bruno Berselli, Feb 09 2016
(PARI) isok(n) = issquare(n) || ispower(n, 3); \\ Michel Marcus, Mar 29 2016
(Python)
from math import isqrt
from sympy import integer_nthroot
def A002760(n):
def f(x): return n-1+x+integer_nthroot(x, 6)[0]-integer_nthroot(x, 3)[0]-isqrt(x)
m, k = n-1, f(n-1)
while m != k:
m, k = k, f(k)
return m # Chai Wah Wu, Aug 09 2024
CROSSREFS
Cf. A131799; union of A000290 and A000578.
First differences in A075052. [From Zak Seidov, May 10 2010]
Sequence in context: A246547 A195942 A125643 * A355062 A355060 A115651
KEYWORD
nonn
STATUS
approved