[go: up one dir, main page]

login
A002471
Number of partitions of n into a prime and a square.
(Formerly M0073 N0025)
12
0, 1, 2, 1, 1, 2, 2, 1, 1, 0, 3, 2, 1, 2, 1, 1, 2, 2, 2, 2, 2, 1, 3, 1, 0, 1, 3, 2, 2, 2, 1, 3, 2, 0, 2, 1, 1, 4, 2, 1, 3, 2, 2, 2, 2, 1, 4, 2, 1, 1, 2, 2, 3, 3, 1, 3, 2, 0, 3, 2, 1, 4, 2, 0, 2, 3, 3, 4, 2, 1, 3, 3, 2, 1, 3, 1, 4, 2, 2, 3, 1
OFFSET
1,3
COMMENTS
a(A014090(n))=0; a(A014089(n))>0; a(A143989(n))=1. - Reinhard Zumkeller, Sep 07 2008
REFERENCES
Selmer, Ernst S.; Eine numerische Untersuchung ueber die Darstellung der natuerlichen Zahlen als Summe einer Primzahl und einer Quadratzahl. Arch. Math. Naturvid. 47, (1943). no. 2, 21-39.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
G.f.: (Sum_{i>=0} x^(i^2))*(Sum_{j>=1} x^prime(j)). - Ilya Gutkovskiy, Feb 07 2017
MAPLE
n->nops(select(isprime, [ seq(n-i^2, i=0..trunc(sqrt(n))) ])):
with(combstruct): specM0073 := {N=Prod(P, S), P=Set(Z, card>=1), S=Set(Z, card>=0)}: `combstruct/compile`(specM0073, unlabeled): `combstruct/Count`[ specM0073, unlabeled ][ P ] := proc(p) option remember; if isprime(p) then 1 else 0 fi end: `combstruct/Count`[ specM0073, unlabeled ][ S ] := proc(p) option remember; if type(sqrt(p), integer) then 1 else 0 fi end: M0073 := n->count([ N, specM0073, unlabeled ], size=n):
MATHEMATICA
a[n_] := Count[p /. {ToRules[ Reduce[ p > 1 && q >= 0 && n == p + q^2, {p, q}, Integers]]}, _?PrimeQ]; Table[ a[n], {n, 1, 81}] (* from Jean-François Alcover, Sep 30 2011 *)
PROG
(Haskell)
a002471 n = sum $ map (a010051 . (n -)) $ takeWhile (< n) a000290_list
-- Reinhard Zumkeller, Jul 23 2013, Sep 30 2011
(PARI) a(n)=if(n>1, sum(k=0, sqrtint(n-2), isprime(n-k^2)), 0) \\ Charles R Greathouse IV, Feb 08 2017
CROSSREFS
KEYWORD
nonn,nice
EXTENSIONS
Sequence corrected by Paul Zimmermann, Mar 15 1996
STATUS
approved