OFFSET
1,3
COMMENTS
REFERENCES
Selmer, Ernst S.; Eine numerische Untersuchung ueber die Darstellung der natuerlichen Zahlen als Summe einer Primzahl und einer Quadratzahl. Arch. Math. Naturvid. 47, (1943). no. 2, 21-39.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. D. Noe, Table of n, a(n) for n = 1..10000
FORMULA
G.f.: (Sum_{i>=0} x^(i^2))*(Sum_{j>=1} x^prime(j)). - Ilya Gutkovskiy, Feb 07 2017
MAPLE
n->nops(select(isprime, [ seq(n-i^2, i=0..trunc(sqrt(n))) ])):
with(combstruct): specM0073 := {N=Prod(P, S), P=Set(Z, card>=1), S=Set(Z, card>=0)}: `combstruct/compile`(specM0073, unlabeled): `combstruct/Count`[ specM0073, unlabeled ][ P ] := proc(p) option remember; if isprime(p) then 1 else 0 fi end: `combstruct/Count`[ specM0073, unlabeled ][ S ] := proc(p) option remember; if type(sqrt(p), integer) then 1 else 0 fi end: M0073 := n->count([ N, specM0073, unlabeled ], size=n):
MATHEMATICA
a[n_] := Count[p /. {ToRules[ Reduce[ p > 1 && q >= 0 && n == p + q^2, {p, q}, Integers]]}, _?PrimeQ]; Table[ a[n], {n, 1, 81}] (* from Jean-François Alcover, Sep 30 2011 *)
PROG
(Haskell)
a002471 n = sum $ map (a010051 . (n -)) $ takeWhile (< n) a000290_list
-- Reinhard Zumkeller, Jul 23 2013, Sep 30 2011
(PARI) a(n)=if(n>1, sum(k=0, sqrtint(n-2), isprime(n-k^2)), 0) \\ Charles R Greathouse IV, Feb 08 2017
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
EXTENSIONS
Sequence corrected by Paul Zimmermann, Mar 15 1996
STATUS
approved