[go: up one dir, main page]

login
A002238
Numbers k such that 21*2^k - 1 is prime.
(Formerly M0825 N0314)
2
1, 2, 3, 7, 10, 13, 18, 27, 37, 51, 74, 157, 271, 458, 530, 891, 1723, 1793, 1849, 1986, 2191, 2869, 4993, 7777, 11730, 15313, 29171, 35899, 36227, 71570, 199219, 233914, 297499, 332523, 348547, 538657, 986130, 999599
OFFSET
1,2
REFERENCES
H. Riesel, Lucasian criteria for the primality of N=h.2^n-1, Math. Comp., 23 (1969), 869-875.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ray Ballinger and Wilfrid Keller, List of primes k.2^n + 1 for k < 300
R. K. Guy, The strong law of small numbers. Amer. Math. Monthly 95 (1988), no. 8, 697-712. [Annotated scanned copy]
PROG
(PARI) is(n)=ispseudoprime(21*2^n-1) \\ Charles R Greathouse IV, May 22 2017
CROSSREFS
Cf. A032360, 21*2^k + 1 is prime.
Sequence in context: A101956 A273064 A341238 * A002255 A272649 A266813
KEYWORD
hard,nonn
EXTENSIONS
More terms from Hugo Pfoertner, Jun 22 2004
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
STATUS
approved