[go: up one dir, main page]

login
A002202
Values taken by totient function phi(m) (A000010).
(Formerly M0987 N0371)
133
1, 2, 4, 6, 8, 10, 12, 16, 18, 20, 22, 24, 28, 30, 32, 36, 40, 42, 44, 46, 48, 52, 54, 56, 58, 60, 64, 66, 70, 72, 78, 80, 82, 84, 88, 92, 96, 100, 102, 104, 106, 108, 110, 112, 116, 120, 126, 128, 130, 132, 136, 138, 140, 144, 148, 150, 156, 160, 162, 164, 166, 168, 172, 176
OFFSET
1,2
COMMENTS
These are the numbers n such that for some m the multiplicative group mod m has order n.
Maier & Pomerance show that there are about x * exp(c (log log log x)^2)/log x members of this sequence up to x, with c = 0.81781465... (A234614); see the paper for details on making this precise. - Charles R Greathouse IV, Dec 28 2013
A264739(a(n)) = 1; a(n) occurs A058277(n) times in A007614. - Reinhard Zumkeller, Nov 26 2015
There are no odd numbers > 2 in the sequence and the even numbers that are not in the sequence are in A005277. - Bernard Schott, May 13 2020
REFERENCES
J. W. L. Glaisher, Number-Divisor Tables. British Assoc. Math. Tables, Vol. 8, Camb. Univ. Press, 1940, p. 64.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
André Contiero, and Davi Lima, 2-Adic Stratification of Totients, arXiv:2005.05475 [math.NT], 2020.
K. Ford, The distribution of totients, Electron. Res. Announc. Amer. Math. Soc. 4 (1998), 27-34.
Helmut Maier and Carl Pomerance, On the number of distinct values of Euler's phi-function, Acta Arithmetica 49:3 (1988), pp. 263-275.
S. Sivasankaranarayana Pillai, On some functions connected with phi(n), Bull. Amer. Math. Soc. 35 (1929), 832-836.
Eric Weisstein's World of Mathematics, Totient Valence Function
MAPLE
with(numtheory); t1 := [seq(nops(invphi(n)), n=1..300)]; t2 := []: for n from 1 to 300 do if t1[n] <> 0 then t2 := [op(t2), n]; fi; od: t2;
MATHEMATICA
phiQ[m_] := Select[Range[m+1, 2m*Product[(1-1/(k*Log[k]))^(-1), {k, 2, DivisorSigma[0, m]}]], EulerPhi[#] == m &, 1 ] != {}; Select[Range[176], phiQ] (* Jean-François Alcover, May 23 2011, after Maxim Rytin *)
PROG
(PARI) lst(lim)=my(P=1, q, v); forprime(p=2, default(primelimit), if(eulerphi(P*=p)>=lim, q=p; break)); v=vecsort(vector(P/q*lim\eulerphi(P/q), k, eulerphi(k)), , 8); select(n->n<=lim, v) \\ Charles R Greathouse IV, Apr 16 2012
(PARI) select(istotient, vector(100, i, i)) \\ Charles R Greathouse IV, Dec 28 2012
(Haskell)
import Data.List.Ordered (insertSet)
a002202 n = a002202_list !! (n-1)
a002202_list = f [1..] (tail a002110_list) [] where
f (x:xs) ps'@(p:ps) us
| x < p = f xs ps' $ insertSet (a000010' x) us
| otherwise = vs ++ f xs ps ws
where (vs, ws) = span (<= a000010' x) us
-- Reinhard Zumkeller, Nov 22 2015
CROSSREFS
Cf. A002110, A005277, A007614, A007617 (complement).
Cf. A083533 (first differences), A264739.
Cf. A006093 (a subsequence).
Sequence in context: A356448 A340521 A002174 * A049225 A351910 A371177
KEYWORD
nonn,nice
STATUS
approved