[go: up one dir, main page]

login
A001990
Let p be the n-th odd prime. a(n) is the least prime congruent to 5 modulo 8 such that Legendre(-a(n), q) = -Legendre(-2, q) for all odd primes q <= p.
(Formerly M3953 N1632)
2
5, 29, 29, 29, 29, 29, 29, 29, 23669, 23669, 23669, 23669, 23669, 23669, 1508789, 5025869, 9636461, 9636461, 9636461, 37989701, 37989701, 37989701, 37989701, 37989701, 240511301, 240511301
OFFSET
1,1
COMMENTS
Numbers so far are all congruent to 5 (mod 24). - Ralf Stephan, Jul 07 2003
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp., 24 (1970), 433-451.
D. H. Lehmer, E. Lehmer and D. Shanks, Integer sequences having prescribed quadratic character, Math. Comp., 24 (1970), 433-451 [Annotated scanned copy]
PROG
(PARI) isok(p, oddpn) = {forprime(q=3, oddpn, if (kronecker(p, q) != -kronecker(-2, q), return (0)); ); return (1); }
a(n) = {oddpn = prime(n+1); forprime(p=3, , if ((p%8) == 5, if (isok(p, oddpn), return (p)); ); ); } \\ Michel Marcus, Oct 18 2017
CROSSREFS
Cf. A001988.
Sequence in context: A057713 A124987 A002584 * A043062 A321701 A243012
KEYWORD
nonn
EXTENSIONS
Better name from Sean A. Irvine, Mar 06 2013
Name and offset corrected by Michel Marcus, Oct 18 2017
STATUS
approved