[go: up one dir, main page]

login
A001668
Number of self-avoiding n-step walks on honeycomb lattice.
(Formerly M2559 N1013)
8
1, 3, 6, 12, 24, 48, 90, 174, 336, 648, 1218, 2328, 4416, 8388, 15780, 29892, 56268, 106200, 199350, 375504, 704304, 1323996, 2479692, 4654464, 8710212, 16328220, 30526374, 57161568, 106794084, 199788408, 372996450, 697217994, 1300954248
OFFSET
0,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. Duminil-Copin and S. Smirnov, The connective constant of the honeycomb lattice equals sqrt(2+sqrt(2)), Ann. Math. 175 (2012), pp. 1653-1665. arXiv:1007.0575 [math-ph], 2010-2011.
M. E. Fisher and M. F. Sykes, Excluded-volume problem and the Ising model of ferromagnetism, Phys. Rev. 114 (1959), 45-58.
E. J. Janse van Rensburg and S. G. Whittington, Exponential growth rate of lattice comb polymers, arXiv:2407.21112 [cond-mat.stat-mech], 2024. See p. 9.
I. Jensen, Series Expansions for Self-Avoiding Walks [Gives 105 terms] - Hugo Pfoertner, Aug 10 2014
D. MacDonald, D. L. Hunter, K. Kelly and N. Jan, Self-avoiding walks in two to five dimensions: exact enumerations and series study, J Phys A: Math Gen 25 (1992) 1429-1440. [Gives 42 terms]
M. F. Sykes et al., The asymptotic behavior of selfavoiding walks and returns on a lattice, J. Phys. A 5 (1972), 653-660. [Gives 34 terms]
FORMULA
mu^n <= a(n) <= mu^n alpha^sqrt(n) for mu = A179260 and some alpha. It has been conjectured that a(n) ~ mu^n * n^(11/32). - Charles R Greathouse IV, Nov 08 2013
MAPLE
a:= proc(n) local v, b;
if n<2 then return 1 +2*n fi;
v:= proc() false end: v(0, 0), v(1, 0):= true$2;
b:= proc(n, x, y) local c;
if v(x, y) then 0
elif n=0 then 1
else v(x, y):= true;
c:= b(n-1, x+1, y) + b(n-1, x-1, y) +
b(n-1, x, y-1+2*((x+y) mod 2));
v(x, y):= false; c
fi
end;
6*b(n-2, 1, 1)
end:
seq(a(n), n=0..20); # Alois P. Heinz, Jul 07 2011
MATHEMATICA
a[n_] := a[n] = Module[{v, b}, If[n < 2 , Return[1+2*n]]; v[0, 0] = v[1, 0] = True; v[_, _] = False; b[m_, x_, y_] := Module[{c}, If[v[x, y], 0 , If[ m == 0 , 1, v[x, y] = True; c = b[m-1, x+1, y] + b[m-1, x-1, y] + b[m-1, x, y-1 + 2*Mod[x+y, 2]]; v[x, y] = False; c]]]; 6*b[n-2, 1, 1]]; Table[Print["a(", n, ") = ", a[n]]; a[n], {n, 0, 32}] (* Jean-François Alcover, Nov 25 2013, translated from Alois P. Heinz's Maple program *)
CROSSREFS
Cf. A006851.
Sequence in context: A102255 A192871 A002910 * A080616 A090572 A163876
KEYWORD
nonn,walk,nice
EXTENSIONS
More terms from Pab Ter (pabrlos(AT)yahoo.com), May 06 2004
STATUS
approved