[go: up one dir, main page]

login
A000582
a(n) = binomial coefficient C(n,9).
(Formerly M4712 N2013)
35
1, 10, 55, 220, 715, 2002, 5005, 11440, 24310, 48620, 92378, 167960, 293930, 497420, 817190, 1307504, 2042975, 3124550, 4686825, 6906900, 10015005, 14307150, 20160075, 28048800, 38567100, 52451256, 70607460, 94143280, 124403620, 163011640, 211915132
OFFSET
9,2
COMMENTS
Figurate numbers based on 9-dimensional regular simplex. - Jonathan Vos Post, Nov 28 2004
Product of 9 consecutive numbers divided by 9!. - Artur Jasinski, Dec 02 2007
In this sequence there are no primes. - Artur Jasinski, Dec 02 2007
a(9+n) gives the number of words with n letters over the alphabet {0,1,..,9} such that these letters are read from left to right in weakly increasing (nondecreasing) order. - R. J. Cano, Jul 20 2014
a(n) = fallfac(n, 9)/9! = binomial(n, 9) is also the number of independent components of an antisymmetric tensor of rank 9 and dimension n >= 9 (for n=1..8 this becomes 0). Here fallfac is the falling factorial. - Wolfdieter Lang, Dec 10 2015
From Juergen Will, Jan 23 2016: (Start)
Number of compositions (ordered partitions) of n+1 into exactly 10 parts.
Number of weak compositions (ordered weak partitions) of n-9 into exactly 10 parts. (End)
Number of integers divisible by 9 in the interval [0, 10^(n-8)-1]. - Miquel Cerda, Jul 02 2017
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 828.
Albert H. Beiler, Recreations in the Theory of Numbers, Dover, NY, 1964, p. 196.
L. E. Dickson, History of the Theory of Numbers. Carnegie Institute Public. 256, Washington, DC, Vol. 1, 1919; Vol. 2, 1920; Vol. 3, 1923, see vol. 2, p. 7.
J. C. P. Miller, editor, Table of Binomial Coefficients. Royal Society Mathematical Tables, Vol. 3, Cambridge Univ. Press, 1954.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
Hyun Kwang Kim, On Regular Polytope Numbers, Proc. Amer. Math. Soc., Vol. 131, No. 1 (2002), pp. 65-75.
P. A. MacMahon, Memoir on the Theory of the Compositions of Numbers, Phil. Trans. Royal Soc. London A, 184 (1893), 835-901.
Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
Rajesh Kumar Mohapatra and Tzung-Pei Hong, On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences, Mathematics (2022) Vol. 10, No. 7, 1161.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Ch. Stover and E. W. Weisstein, Composition. From MathWorld - A Wolfram Web Resource.
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
G.f.: x^9/(1-x)^10.
a(n) = -A110555(n+1, 9). - Reinhard Zumkeller, Jul 27 2005
a(n+8) = n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)/9!. - Artur Jasinski, Dec 02 2007; R. J. Mathar, Jul 07 2009
Sum_{k>=9} 1/a(k) = 9/8. - Tom Edgar, Sep 10 2015
Sum_{n>=9} (-1)^(n+1)/a(n) = A001787(9)*log(2) - A242091(9)/8! = 2304*log(2) - 446907/280 = 0.9146754386... - Amiram Eldar, Dec 10 2020
MAPLE
A000582 := n->binomial(n, 9): seq(A000582(n), n=9..40);
A000582:=1/(z-1)**10; # Simon Plouffe in his 1992 dissertation (offset 0)
seq(binomial(n, 9), n=0..29); # Zerinvary Lajos, Jun 23 2008, R. J. Mathar, Jul 07 2009
MATHEMATICA
Table[n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)/9!, {n, 100}] (* Artur Jasinski, Dec 02 2007 *)
Table[Binomial[n, 9], {n, 9, 50}] (* Wesley Ivan Hurt, Jul 20 2014 *)
PROG
(Magma) [Binomial(n, 9) : n in [9..50]]; // Wesley Ivan Hurt, Jul 20 2014
(PARI) a(n)=binomial(n, 9) \\ Charles R Greathouse IV, Jul 21 2014
CROSSREFS
KEYWORD
easy,nonn
EXTENSIONS
Formulas referring to other offsets rewritten by R. J. Mathar, Jul 07 2009
STATUS
approved