[go: up one dir, main page]

login
A000550
Number of trees of diameter 7.
(Formerly M2969 N1201)
3
1, 3, 14, 42, 128, 334, 850, 2010, 4625, 10201, 21990, 46108, 94912, 191562, 380933, 746338, 1444676, 2763931, 5235309, 9822686, 18275648, 33734658, 61826344, 112550305, 203627610, 366267931, 655261559, 1166312530, 2066048261, 3643352362, 6397485909, 11188129665, 19491131627, 33831897511, 58519577756, 100885389220, 173368983090, 297021470421, 507378371670, 864277569606, 1468245046383, 2487774321958, 4204663810414, 7089200255686, 11924621337321, 20012746962064, 33513139512868, 56001473574091, 93387290773141, 155419866337746
OFFSET
8,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
G.f.: a(x)=(r(x)^2+r(x^2))/2, where r(x) is the generating function of A000235. - Sean A. Irvine, Nov 21 2010
MAPLE
b:= proc(n, i, k) option remember; `if`(n=0, 1, `if`(i<1 or k<1, 0,
add(binomial(b((i-1)$2, k-1)+j-1, j)*b(n-i*j, i-1, k), j=0..n/i)))
end:
g:= n-> b((n-1)$2, 3) -b((n-1)$2, 2):
a:= n-> (add(g(i)*g(n-i), i=0..n)+`if`(n::even, g(n/2), 0))/2:
seq(a(n), n=8..40); # Alois P. Heinz, Feb 09 2016
MATHEMATICA
m = 50; r[x_] = (Rest @ CoefficientList[ Series[ x*Product[ (1 - x^k)^(- PartitionsP[k-1]), {k, 1, m+3}], {x, 0, m+3}], x] - PartitionsP[ Range[0, m+2]]).(x^Range[m+3]); A000550 = CoefficientList[(r[x]^2 + r[x^2])/2, x][[9 ;; m+8]] (* Jean-François Alcover, Feb 09 2016 *)
CROSSREFS
Cf. A034853, A000306 (diameter 8)
Sequence in context: A104905 A055650 A367985 * A124650 A291138 A063903
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Nov 21 2010
STATUS
approved