OFFSET
1,5
COMMENTS
Temporary remark: there may be some issues with respect to the offset of this sequence in the formula and program sections. - Joerg Arndt, Nov 16 2014
REFERENCES
F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 263.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Todd Silvestri, Table of n, a(n) for n = 1..450 (first 100 terms from T. D. Noe)
FORMULA
a(n) = (n*(n+1)!/6)*sum((-1)^k/k!, k=0..n).
a(n) = A065087(n+2)/3. - Zerinvary Lajos, May 25 2007
E.g.f.: x^3/3!*exp(-x)/(1-x)^2. - Vladeta Jovovic, Jan 03 2003
a(n) = round( (exp(-1)*(n+1)!+(-1)^n)*n/6 ). - Mark van Hoeij, Oct 25 2011
G.f.: hypergeom([2, 4],[],x/(x+1))/(x+1)^4. - Mark van Hoeij, Nov 07 2011
a(1) = 0, a(n) = (n-2)*(n-1)*(!(n-2))/6 = (n-2)*(n-1)*A000166(n-2)/6, for n >= 2. - Todd Silvestri, Nov 15 2014
a(n) = hypergeom([4-n,2],[],1)*(-1)^n*A000292(n-3). - Peter Luschny, Nov 19 2014
D-finite with recurrence (-n+4)*a(n) +(n-1)*(n-4)*a(n-1) +(n-1)*(n-2)*a(n-2)=0. - R. J. Mathar, Aug 01 2022
MAPLE
series(hypergeom([2, 4], [], x/(x+1))/(x+1)^4, x=0, 30); # Mark van Hoeij, Nov 07 2011
a := n -> simplify(hypergeom([4-n, 2], [], 1))*(-1)^n*(n-1)*(n-2)*(n-3)/6: seq(a(n), n=1..23); # Peter Luschny, Nov 19 2014
MATHEMATICA
Table[(n*(n + 1)!/6)*Sum[(-1)^k/k!, {k, 0, n}], {n, -1, 25}] (* T. D. Noe, Jun 19 2012 *)
a[1]:=0; a[n_Integer/; n>=2]:=(n-2) (n-1) Subfactorial[n-2]/6 (* Todd Silvestri, Nov 15 2014 *)
PROG
(Sage)
a = lambda n: (n-2)*(n-1)*sloane.A000166(n-2)/6 if n>2 else 0
[a(n) for n in range(1, 24)] # Peter Luschny, Nov 19 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from Vladeta Jovovic, Jan 03 2003
Formula added by Sean A. Irvine, Nov 11 2010
Name clarified and offset changed by N. J. A. Sloane, Apr 12 2014
STATUS
approved