[go: up one dir, main page]

login
A000300
4th power of rooted tree enumerator: linear forests of 4 rooted trees.
(Formerly M3479 N1414)
6
1, 4, 14, 44, 133, 388, 1116, 3168, 8938, 25100, 70334, 196824, 550656, 1540832, 4314190, 12089368, 33911543, 95228760, 267727154, 753579420, 2123637318, 5991571428, 16923929406, 47857425416, 135478757308, 383929643780, 1089118243128, 3092612497260
OFFSET
4,2
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 150.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
FORMULA
G.f.: B(x)^4 where B(x) is g.f. of A000081.
a(n) ~ 4 * A187770 * A051491^n / n^(3/2). - Vaclav Kotesovec, Jan 03 2021
MAPLE
b:= proc(n) option remember; if n<=1 then n else add(k*b(k)* s(n-1, k), k=1..n-1)/(n-1) fi end: s:= proc(n, k) option remember; add(b(n+1-j*k), j=1..iquo(n, k)) end: B:= proc(n) option remember; add(b(k)*x^k, k=1..n) end: a:= n-> coeff(series(B(n-3)^4, x=0, n+1), x, n): seq(a(n), n=4..30); # Alois P. Heinz, Aug 21 2008
MATHEMATICA
b[n_] := b[n] = If[ n <= 1, n, Sum[k*b[k]*s[n-1, k], {k, 1, n-1}]/(n-1)]; s[n_, k_] := s[n, k] = Sum[ b[n + 1 - j*k], {j, 1, n/k}]; bb[n_] := bb[n] = Sum[b[k]*x^k, {k, 1, n}]; a[n_] := Coefficient[ Series[ bb[n - 3]^4, {x, 0, n + 1}], x, n]; Table[a[n], {n, 4, 31}] (* Jean-François Alcover, Jan 25 2013, translated from Alois P. Heinz's Maple program *)
CROSSREFS
Column 4 of A339067.
Sequence in context: A118042 A006645 A094309 * A005323 A027831 A097894
KEYWORD
nonn
EXTENSIONS
More terms from Christian G. Bower, Nov 15 1999
STATUS
approved