OFFSET
0,7
COMMENTS
Other terms for "series-reduced tree": (i) homeomorphically irreducible tree, (ii) homeomorphically reduced tree, (iii) reduced tree, (iv) topological tree.
In a series-reduced tree, vertices cannot have degree 2; they can be leaves or have >= 2 branches.
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 284.
D. G. Cantor, personal communication.
F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 232.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 62, Fig. 3.3.3.
J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 526.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Matthew Parker, Table of n, a(n) for n = 0..1000 (first 501 terms from Christian G. Bower)
David Callan, A sign-reversing involution to count labeled lone-child-avoiding trees, arXiv:1406.7784 [math.CO], 30 June 2014.
Ira M. Gessel, Good Will Hunting's Problem: Counting Homeomorphically Irreducible Trees, arXiv:2305.03157 [math.CO], 2023.
James Grime and Brady Haran, The problem in Good Will Hunting, 2013 (Numberphile video).
Frank Harary and Geert Prins, The number of homeomorphically irreducible trees and other species, Acta Math., 101 (1959), 141-162.
F. Harary, R. W. Robinson and A. J. Schwenk, Twenty-step algorithm for determining the asymptotic number of trees of various species, J. Austral. Math. Soc., Series A, 20 (1975), 483-503.
F. Harary, R. W. Robinson and A. J. Schwenk, Corrigenda: Twenty-step algorithm for determining the asymptotic number of trees of various species, J. Austral. Math. Soc., Series A 41 (1986), p. 325.
P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy)
B. D. McKay, Lists of Trees sorted by diameter and Homeomorphically irreducible trees, with <= 22 nodes.
B. D. McKay, Lists of Trees sorted by diameter and Homeomorphically irreducible trees, with <= 22 nodes. [Cached copy of top page only, pdf file, no active links, with permission]
Matthew Parker, The first 2000 terms (7-Zip compressed file)
A. J. Schwenk, Letter to N. J. A. Sloane, Aug 1972
N. J. A. Sloane, Illustration of initial terms
Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 17 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
Peter Steinbach, Field Guide to Simple Graphs, Volume 3, Part 12 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
Eric Weisstein's World of Mathematics, Series-Reduced Tree
FORMULA
G.f.: A(x) = ((x-1)/x)*f(x) + ((1+x)/x^2)*g(x) - (1/x^2)*g(x)^2 where f(x) is g.f. for A059123 and g(x) is g.f. for A001678. [Harary and E. M. Palmer, p. 62, Eq. (3.3.10) with extra -(1/x^2)*Hbar(x)^2 term which should be there according to eq.(3.3.14), p. 63, with eq.(3.3.9)]. [corrected by Wolfdieter Lang, Jan 09 2001]
a(n) ~ c * d^n / n^(5/2), where d = A246403 = 2.189461985660850..., c = 0.684447272004914061023163279794145361469033868145768075109924585532604582794... - Vaclav Kotesovec, Aug 25 2014
EXAMPLE
G.f. = x + x^2 + x^4 + x^5 + 2*x^6 + 2*x^7 + 4*x^8 + 5*x^9 + 10*x^10 + ...
The star graph with n nodes (except for n=3) is a series-reduced tree. For n=6 the other series-reduced tree is shaped like the letter H. - Michael Somos, Dec 19 2014
MAPLE
with(powseries): with(combstruct): n := 30: Order := n+3: sys := {B = Prod(C, Z), S = Set(B, 1 <= card), C = Union(Z, S)}:
G001678 := (convert(gfseries(sys, unlabeled, x) [S(x)], polynom)) * x^2: G0temp := G001678 + x^2:
G059123 := G0temp / x + G0temp - (G0temp^2+eval(G0temp, x=x^2))/(2*x):
G000014 := ((x-1)/x) * G059123 + ((1+x)/x^2) * G0temp - (1/x^2) * G0temp^2:
A000014 := 0, seq(coeff(G000014, x^i), i=1..n); # Ulrich Schimke (ulrschimke(AT)aol.com)
MATHEMATICA
a[n_] := If[n<1, 0, A = x/(1-x^2) + x*O[x]^n; For[k=3, k <= n-1, k++, A = A/(1 - x^k + x*O[x]^n)^SeriesCoefficient[A, k]]; s = ((Normal[A] /. x -> x^2) + O[x]^(2n))*(1-x) + A*(2-A)*(1+x); SeriesCoefficient[s, n]/2]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 02 2016, adapted from PARI *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, A = x / (1 - x^2) + x * O(x^n); for(k=3, n-1, A /= (1 - x^k + x * O(x^n))^polcoeff(A, k)); polcoeff( (subst(A, x, x^2) * (1 - x) + A * (2 - A) * (1 + x)) / 2, n))}; /* Michael Somos, Dec 19 2014 */
CROSSREFS
KEYWORD
nonn,easy,core,nice
AUTHOR
STATUS
approved