
Adaptive Reconfigurable Voting for Enhanced
Reliability in Medium-Grained Fault Tolerant

Architectures
Filip Veljkovic, Teresa Riesgo, Eduardo de la Torre

Abstract— The impact of SRAM-based FPGAs is constantly
growing in aerospace industry despite the fact that their volatile
configuration memory is highly susceptible to radiation effects.
Therefore, strong fault-handling mechanisms have to be
developed in order to protect the design and make it capable of
fighting against both soft and permanent errors. In this paper, a
fully reconfigurable medium-grained triple modular redundancy
(TMR) architecture which forms part of a runtime adaptive on­
board processor (OBP) is presented. Fault mitigation is extended
to the voting mechanism by applying our reconfiguration
methodology not only to domain replicas but also to the voter
itself. The proposed approach takes advantage of adaptive
configuration placement and modular property of the OBP, thus
allowing on-line creation of different medium-grained TMRs and
selection of their granularity level. Consequently, we are able to
narrow down the fault-affected area thus making the error
recovery process faster and less power consuming. The
conventional hardware based voting is supported by the ICAP-
based one in order to additionally strengthen the reconfigurable
intermediate voting. In addition, the implementation
methodology ensures using only one memory footprint for all
voters and their voting adaptations thus saving storing resources
in expensive rad-hard memories.

Keywords—TMR voting, ICAP-based voting, medium-grained
TMR, scalable partial reconfiguration, gcapture, on-board
processor, fully reconfigurable TMR, TMR with spare, adaptive
voter, soft and permanent errors

I. INTRODUCTION

Over the past decades many researchers have devoted their
work to increasing the reliability of digital system design. Due
to constant improvements in semiconductor industry, reflected
in reduced voltage, increased operational frequency and
transistor scaling that faithfully follows "Moore's Law" [1],
dependability emerged as one of the key concerns when
designing a digital system. Special attention has been given to
safety and mission-critical applications in areas such as
medicine, security, defence, aviation, spaceflight and others
where a single failure could lead to injures or serious
consequences considering the mission they are designed for. In
space applications, where once in orbit no further maintenance
is possible, it is vital that a system on its own can detect the
fault, diagnose it, and self-repair in order to recover its normal
operation. This becomes even more essential when it comes to
SRAM-based FPGAs whose impact is constantly growing in

aerospace industry despite the fact that their volatile
configuration memory is highly susceptible to radiation effects.
Space engineering starts taking advantage of extensive
computational resources they possess, short time to market and
significantly lower non-recurring engineering costs compared
to their antifuse-based counterparts or predominantly used
ASICs. The platform also offers high flexibility reflected in the
fact that it can modify or completely change its functionality
through reconfiguration. In addition, recent families of FPGAs
have the possibility to be partially reconfigured during runtime
[2] which is one of the main assets for their breakthrough in the
aerospace market.

In harsh environments the influence of radiation on
semiconductor devices represents one of the main concerns.
Many of the already deployed satellites, along with the
International Space Station, operate in low Earth orbit (LEO)
where the Single Event Upset (SEU) rate for static RAMs
exceeds 10"6/bit per day according to the 10 years
observation study published in [3]. In addition, for SRAM-
based FPGAs, this upset rate is estimated to reach up to several
upsets per hour depending on the altitude, inclination and solar
weather conditions. These SEUs are provoked by high energy
protons or heavy ion components of solar or galactic origins
which penetrate to the substrate of a transistor causing nuclear
interactions or ionization. Such phenomena evoke memory cell
bitflips, which are particularly threatening to the modern
FPGAs as a single alteration in the configuration memory may
result in bad interconnections, invalid LUT functions, wrong
flip-flop values and many other undesirable scenarios.
Consequently, various methodologies and design techniques
have to be developed in order to cope with this issue and
satisfy different reliability requirements.

The majority of today's digital systems in space use
redundancy techniques in order to mask potential errors and
protect its data. As a consequence, one or several parts of a
circuit are duplicated or triplicated in hardware thus forming
the well-known Double or Triple Modular Redundancy (DMR
and TMR) structures [4], [5]. DMR performs the comparison
of the domain outputs thus being able to detect the presence of
a fault. However, using a simple comparator, it is impossible to
determine the affected domain. Therefore, to overcome this
problem, duplication with comparison is often supported with
the so-called Concurrent Error Detection (CED) [5]. On the
other hand, TMR structures use a majority voter at the output

of the replicas in order to propagate the correct result. As the
voter is constantly fed with three domain outputs, it can be
implemented not only to detect the fault and propagate the
majority-voted output, but also to recognize the faulty domain
and signal it to the processor or other type of controller.
Consequently, the system can use that information to trigger
the reconfiguration of the affected FPGA area and thus remove
the fault from the design [6]-[8]. TMR is often supported with
dynamic and partial reconfiguration (DPR) in order to prevent
the accumulation of transient faults and therefore extend the
lifetime of the structure. Along with configuration memory
scrubbing [9], [10], TMR in combination with DPR represents
one of the most widely used techniques for SEU mitigation in
SRAM-based FPGAs.

Although modular redundancy is based upon a simple
methodology, a lot of research has been done targeting its
implementation, e.g. the optimal granularity of DMR/TMR
domains [4], its voting mechanism or even optimal
reconfiguration time after the detection of the fault [11].
Xilinx uses different approaches for implementing TMR
depending on the logic type [12]. Hence, the logic is
categorized into four groups: state machine logic, throughput
logic, I/O logic and special features like PLLs or DSP48s. For
this purpose, Xilinx developed X-TMRTool which supports
the automatic generation of triple redundancy. The triplication
is done at the register level thus achieving the finest
granularity in contrast to the coarse-grained TMR where the
entire logic is triplicated and then voted [13]. However, this
introduces additional area overhead as each register output has
to be checked. In addition, such fine granularity reduces the
maximum frequency of the design considering that voters
have to be introduced on the critical path.

In general, the size of triplicated modules dictates both
implementation and robustness of TMR architectures. The
well-known fact is that the TMR protection of the system ends
with errors present in more than one domain. That is often a
consequence of an error accumulation due to insufficiently
short scrub cycle, multiple bit upset (MBU) or routing errors
which affect two or more domains. Furthermore, a voter itself
represents a single point of failure. In other words, a fault in
the voting part of the circuit may cause wrong system
behavior and produce incorrect output data. Hence, the voting
mechanism is also often triplicated thus introducing additional
area overhead in already expensive architecture. For systems
with restricted FPGA utilization area and limited power
consumption additional redundancy costs may be intolerable.
Therefore, recent research on this topic is focused on finding
an optimal trade-off between the implementation costs and
system’s reliability.

In this paper we present an adaptive reconfigurable voting
mechanism for both medium- and coarse-grained fault tolerant
architectures. One of the main goals was to extend the DPR-
supported SEU mitigation to voting partitions, which are
usually the weakest points of TMR architectures. Our
reconfigurable voter is capable of adapting to different types
and positions of fault tolerant structures during runtime. Each
adaptation is done directly through the internal configuration
access port (ICAP) by reconfiguring only one frame which
corresponds to LUTs, thus making possible to use a single and

reduced memory footprint for all variants of voting. Moreover,
that particular footprint is used for the configuration of
intermediate voters in a medium-grained T M R architecture
where each domain is comprised of several scalable stages.
Consequently, a fully reconfigurable fault tolerant architecture
is achieved giving the opportunity to correct the faults in both
voter and T M R domains.

Apart from the traditional voting performed in hardware,
the reconfigurable design is supported by an ICAP-based
voting. More precisely, captured flip-flop values corresponding
to the outputs of each stage, and stored in the configuration
memory, are periodically read through the I C A P and compared
by the processor. This new feature allows additional securing
of the conventional hardware-based voting process. Moreover,
in fault tolerant systems using so-called warm redundancy,
where it is allowed to lose several clock cycles of data before
correcting the fault, it can be used as the only voting
mechanism thus permitting a complete exclusion of voters
from hardware.

Our methodology is applied to a digital video broadcast on­
board processor (DVB-OBP) , used in a satellite
communications application, which is able to self-adapt to
harsh environmental conditions trading-off performance for
fault tolerance. This adaptation is performed during runtime by
duplicating or triplicating the essential part of the design. As a
result, the voter itself has to be able to adapt to different types
and positions of configured fault tolerant structures. Moreover,
we take benefit of the modular property of the design and
partition the scalable reconfigurable architecture in order to
create medium-grained T M R . Consequently, we narrow down
the affected area and using the information obtained by the
intermediate voters, reconfigure only part of a domain in order
to repair the fault. Therefore, the proposed method reduces the
time needed to correct the error thus making the recovery
process faster and less power consuming. In addition, the
employed reconfiguration methodology does not use Xilinx
D P R flow presented in [2], being able to create completely
isolated T M R domains using relocatable partial configurations.
Our design methodology can be applied to any system with
modular properties.

The rest of the paper is organized as follows. In section 2,
we present the overview of the related work focusing on
medium-grained T M R architectures and give the motivation
for our work. Section 3 introduces the base for our current
research expressed in a runtime reconfigurable O B P capable of
adapting to different operational demands and environmental
conditions. The main contribution of this paper is presented in
section 4. A complete implementation process along with the
voting mechanism is described and the entire configuration
comprised of several scalable stages is analyzed. Obtained
results are summarized and discussed in section 5. Finally,
section 6 gives perspectives and conclusion of this paper.

I I . RELATED WORK

The most common S E U mitigation is configuration
memory scrubbing which is present in the literature for more
than 20 years. It implies periodical rewriting of configuration
memory with a golden copy stored in a rad-hard memory. It is
performed either independently of the occurrence of an error or

when there is a mismatch between the readback of the
configuration memory and the golden copy. Consequently, we
can distinguish between blind scrubbing and scrubbing with
readback [6]. However, these techniques introduce large
overhead in terms of reconfiguration time, increase system’s
power consumption and often require freezing the device
during the recovery process. In order to reduce these expenses,
modern robust designs include redundancy-based techniques
supported by DPR.

The main concept of the protection based on modular
redundancy is presented in Fig. 1. The idea is to implement two
or more copies of the same circuit which perform the same task
in parallel. At the output of the circuits a simple comparator is
implemented in order to detect and mask possible fault
occurrences. Today’s fault tolerant systems are mostly based
on TMR performed at the register level following the concept
used in X-TMRTool [12]. Therefore, the robustness is
significantly increased as voting is performed over the smallest
possible modules. However, such fine granularity introduces
additional area overhead in an architecture that already uses
200% more logic than necessary. In addition, high number of
voting instances significantly decreases the maximum
frequency of a design.

On the other hand, standard coarse-grained TMR
architectures [5], [13], [14] use only one voter partition in order
to propagate the correct result as shown in Fig. 1b. As a voter
can also be an SEU target, designers triplicate the instance and
therefore add more redundant components to the system. When
a fault is detected, the recovery performed through DPR takes
more time in order to reconfigure large, fault-affected modules.
Therefore, since the DPR process normally increases power
consumption, longer reconfiguration causes higher overall
energy costs. In addition, occurrence of faults in two large
domains results in erroneous data at the output of the voter and
completely impairs the structure.

In order to cope with these issues, current research is
directed towards an optimal implementation of redundancy-
based fault tolerance. As a result, Wang in [15] performs a
comprehensive study on the relation between robustness and
TMR granularity. Various alternatives of partitioning the TMR
are analyzed and an optimal trade-off between costs and
reliability is achieved applying medium granularity. A similar
research is published in [16] where a cascaded TMR is
implemented by inserting alternative number of triplicated
voters between the partitions. A quality comparison of a
coarse- vs. medium-grained TMR robustness is presented in
[17]. Authors perform partitioning in shared Wishbone
architectures and categorize injected errors using fault counters
for each of the domains. They present better fault mitigation
results when finer, medium-grained TMR is employed.
Bolchini et al. proposed TMR applications at different
granularity levels ranging from system to component level [7],
[18]. They support the fault mitigation using DPR of the fault-
affected domains. By voting smaller TMR domains and
making them independent one from each other, they achieved
more than 80% of reduction in terms of average
reconfiguration time when a fault is detected comparing to the
typical scrubbing with readback.

domain in error

Replica

Fig. 1 a) Double Modular Redundancy - D M R ; b) Triple Modular
Redundancy – T M R with error localization

In this work we apply the partitioning methodology to a
part of an O B P . Taking advantage of our relocatable partial
configurations, the granularity and positon of the configured
fault tolerant structures can be modified during runtime and on-
demand. In order to make it possible, we introduce
reconfigurable voters which are placed between domain
partitions during runtime. These reconfigurable voters are
supported by error counters corresponding to each of the
configured domains. Moreover, the voting process is
additionally strengthened using the ICAP-based voting [19]. It
goes directly to the present state of the configuration memory
and compares the predetermined F F values that correspond to
the outputs of each partition in every domain. Implementing
fully reconfigurable redundancy structures able to change from
coarse to medium granularities during runtime we increase the
robustness of an entire design and extend their lifetime. In
addition, using only one memory footprint for each partition of
the fault tolerant structures we can achieve significant savings
in terms of resources in expensive rad-hard memories.

III . RUNTIME ADAPTIVE DEMULTIPLEXER ARCHITECURE

In this chapter the base for our current research is presented
summoning up the previously conducted work. It is represented
in terms of a reconfigurable D E M U X which forms part of an
O B P capable of adapting to different environmental conditions
during runtime [19]. Two different reconfiguration strategies
are applied including conventional and scalable D P R . Block
diagram of the static part of the design is presented in Fig. 2,
whereas the reconfigurable parts for both, conventional and
scalable D P R strategies are shown in Fig. 3a and Fig. 3b,
respectively. The reconfigurable D E M U X takes the 10-bit
input signal coming from an analog-to-digital converter and
performs series of complex operations in each of the 4
reconfigurable sub-bands (SBs) thus creating carriers of
different frequencies. These carriers are later used in a
Demodulator-Decoder (D E M D E C) part of the O B P for the
creation of M P E G - 2 packets following the D V B standard.

As shown in Fig. 2, the static part of the reconfigurable
D E M U X is comprised of a Block10, zone selector, an adaptive
voter and output interface. For simplicity of the block diagram,
a series of smaller modules which perform various different
operations are represented as Block10. The outputs of the
block, S B 1 to SB4, represent a set composed of 8 MHz carriers
and material for the creation of lower frequency carriers in
each reconfigurable S B . Therefore, 8MHz carriers are created

a)

input

output

b

-\OUT1 ÍAdaptive*:::

OUT2 L.VOTER.$'"

O U T 3

O U T 4 ' -H Flag Register

- » - •

- » - •

Fig. 2 Static part of the reconfigurable DEMUX

in the static part, whereas the rest of the carriers of lower
frequencies are created in the reconfigurable part of the design.
In spite of this, the 8 MHz carriers of all 4 SBs are conducted
to the reconfigurable part. Consequently, the design is able to
create and output only the demanded carriers at each point of
operation.

A special block, in Fig. 2 labeled as Zone Select, is in
charge of dispatching the Block10 outputs to the corresponding
reconfiguration zone using the information stored in a
processor accessible Placement register. Hence, a complete
flexibility in SB placement is achieved. Taking advantage of it,
the design is capable of creating different fault tolerant
structures in the reconfigurable portion of the chip during
runtime. This is achieved by sending the data, corresponding to
only one SB, to several reconfiguration zones and by
reconfiguring these areas with the same bitstream.
Consequently, the configured hardware will create carriers of
the same frequency and return them back to the static part of
the design. Depending on the number of zones that receive the
same inputs, the design can configure dual or triple
redundancy. In addition, since there are 4 reconfiguration
zones, a SB can be triplicated in 4 different positions in the
chip. As a result, the system is able to remove a configuration
from a zone struck by a hard error and configure it in a spare
one thus making it capable of fighting not only soft errors, but
also permanent ones by simply changing the position of a
configured TMR structure. This configuration is present in the
literature as TMR-with-spare [20].

The carriers coming from the reconfigurable zones are
taken by a voter which, depending on the present value of the
placement register, adapts to different types and positions of
configured redundancies. It takes the outputs coming from all
four zones, compares (DMR), votes (TMR) and finally
forwards them to the output interface. Any detected error in the
voting process is stored in the flag register setting one of the 4
bits corresponding to the area that has been affected. A bit set
in the flag register triggers the reconfiguration of the affected
domain. Therefore, the system is able to self-recover from an
SEU appeared as a bitflip in the configuration memory.

Two DPR strategies applied to the architecture are
presented in Fig. 3. The first one is the conventional
reconfiguration where one module is substituted by another at
each change of demand. An example configuration, where 0.5,
1, 2 and 4 MHz are demanded from the SBs, is presented in

PBS

1 4 MHz

2 MHz

1 MHzl

0.5 MHz

a)

Block

1 »

Block] • * '
1 ¡a

Block 2 J

" 1 Block CBlock2SBlock3
I

zBlockzBlock 2 i [

4 MHz

2 MHz

1 MHzl

0.5 MHz

b)

Fig. 3 Reconfigurable part of the D E M U X architecture: a) Conventional
D P R strategy; b) Scalable D P R strategy

Fig. 3a. In order to reconfigure less area and such obtain a
faster and less power consuming D P R process, we take
advantage of the modular property of the S B logic, partition the
S B and create runtime scalable partial configurations. The
same configuration example for scalable D P R is presented in
Fig. 3b. It can be noted that when using the first approach, 4
reconfiguration zones are available, corresponding to 4 SBs.
On the other hand, when using scalable configurations, each of
the SBs is additionally partitioned thus creating 3 sub-zones.
Due to the lack of resources in the current chip, the 4th block
cannot be configured. Therefore, when 0.5 MHz carriers are
demanded from a S B in the second approach, a partially
scalable configuration containing blocks 2, 3 and 4 together is
connected to the Block1. Using scalable configurations, the
obtained savings reach up to 43% in terms of storage resources
in an expensive rad-hard memory. Moreover, we made an
important step towards the possibility to further increase the
fault tolerance of the design.

I V . FULLY RECONFIGURABLE FAULT-TOLERANCE

A vast majority of today’s fault tolerant structures
employed in SRAM-based FPGAs use the redundancy
approach. However, not as many support it with D P R to
mitigate the occurring faults and stop their accumulation.
Those designs that do use D P R often focus only on redundancy
domains thus completely neglecting the importance of the
voter. More precisely, when an S E U appears and gets detected
in one of the replicated modules, the system triggers the
reconfiguration process and reconfigures the logic that
corresponds to the affected domain. However, when a fault
appears in a voting partition it completely destroys the

PBS 2

PBS 3

PBS 4

Bock 3 Block 4

file://-/OUT1

Ol3
«•03

• 12

«N02

Fig. 4 Adaptive voting partition for a fully reconfigurable fault tolerance

structure. A solution which is often found in the literature
implies triplication of the voter as well. That might be too
much for a system with strict area and power constraints or
design in which triplicated modules possess huge number of
signals that have to be voted. Moreover, even if triplicated, a
voter losing one of its replicas stops being properly secured
since any subsequent error in the two remaining replicas would
corrupt the entire composition. Therefore, our approach takes a
step further and introduces adaptive reconfigurable voting
which brings the opportunity to correct not only faults present
in domain replicas but also those which appear in the voting
partition.

A. Runtime Adaptive Reconfigurable Voting Partition

In order to enable reconfigurable voting for our fault
tolerant structures a voting partition comprised of two voter
units is implemented and shown in Fig. 4. One voter takes the
SB material coming from the static part of the design, whereas
the other one compares the created carriers coming from
reconfigurable modules. They are able to adapt to both non-
redundancy and redundancy modes of operation. In the former
case, voters perform a simple propagation of the inputs. When
a SB is duplicated it adapts to the DMR position, compares the
inputs coming from the duplicated logic and, if equal
propagates them along with the 2 remaining inputs. On the
other hand when a SB is triplicated, voters adapt to the TMR
position and act as majority voters. The remaining input is
simply propagated to the output. It is important to note that in
this composition, the voter, as well as the entire structure, is
constantly in a TMR-with-spare mode. Therefore, if a
permanent error appears in one of the reconfiguration zones,
the system can stop using the affected part of the hardware and
move the logic to the spare zone. Consequently, the system is
able to mitigate not only soft errors in the configuration
memory but also permanent errors which cannot be repaired
via DPR. The price that has to be paid in that case is the
inability to configure another SB along with the triplicated one.

The adaptation is performed through ICAP by modifying
only 4 bits that control the outputs of 4 implemented LUTs.
These LUTs are in charge of controlling the voters’
configuration so that the voting can adapt to different types and
positions of the configured structures. They are placed in a
single slice and configured such that the bits corresponding to
their outputs reside in only one CLB frame. Therefore, a faster
adaptation is achieved since only one frame needs to be

reconfigured. Apart from the control LUTs, two 4-bit flag
registers have been implemented to indicate the presence of the
fault in one of the reconfigurable domains. If a mismatch
occurs in the voting process a bit corresponding to the affected
zone is set high. In addition, eight counters, four per voter, are
implemented in order to count possible faults in 4 different
branches.

B. Implementation methodology

When the Xilinx DPR flow is not used, the implementation
of reconfigurable partitions requires slightly different
approach. In order to design completely independent and
therefore relocatable modules, each partial configuration is
treated as a separated module. Once the logic is synthesized, it
is floorplanned in PlanAhead such that occupies the least
possible area on chip. After the implementation step, a Netlist
Circuit Description (NCD) file, which is a Xilinx proprietary
binary format to internally describe the implemented design, is
created. In order to contain the routing within strict boundaries
on chip, a user can open the file using FPGA Editor and try to
reroute the conflicting nets. Although helpful when compact
configuration is not a must, the lack of routing flexibility
implies searching for other solutions in applications with
limited FPGA resources.

The first step in our design methodology implies converting
the NCD file to Xilinx Description Language (XDL) [21] using
the -ncd2xdl command in Command Prompt of the ISE Design
Suite. Therefore, a human-readable equivalent version of the
NCD is created which allows design modifications exploiting
an open source java based set of RapidSmith [22], [23]. We
modified the RapidSmith based router published in [24] and
such created our own rerouter which contains all nets of the
design within the predetermined area on chip. When the XDL
file is repaired by the rerouter, it is reconverted to NCD using
the - xdl2ncd command. Consequently, a programming file is
generated containing a full configuration of the FPGA. Since
only part of it is useful information, we cut the part of the
programming file corresponding to the portion of FPGA area
where the logic is implemented and store it as a partial
configuration file in our external RAM memory. Finally, we
obtain the smallest possible memory footprint and on-chip
relocatable partial configuration.

Each partial configuration in our design is implemented
following the above set of steps. Therefore, compact, reliable
and, most importantly, relocatable partial configurations are
obtained. Consequently, they can be used in any other part of
the chip with the same architecture. This implementation
methodology is also applied to the voting partition thus
enabling flexible voter insertion for medium-grained fault
tolerant structures.

C. Scalable Medium-Grained Fault Tolerant Structures

The implementation of the runtime adaptive voting
partition allows the employment of fully reconfigurable TMR
structures. Such configuration is presented in Fig. 5 where the
3rd SB is configured along with the triplicated 2nd SB. In this
example configuration, 1 MHz carriers are demanded from the
TMR-protected 2nd SB, whereas 8 MHz carriers are demanded
from the 3rd one. When using conventional partial
configurations for the creation of fault tolerant structures, only

SB2->

1 MHz|«"

SB3">

8 MHz <=

SB2=i

1 MHz|«"

SB2

1 MHz f

A
D
A
P
T
I
V
E

V
O
T
E
R

4>

>̂

PBS 3

>

r
B»

^
PBS 3

>

PBS 3

SB3

Fig. 5 An example of a coarse-grained TMR configuration – Demanded 1
MHz carriers from the 2nd SB and 8 MHz carriers from the 3rd SB

one reconfigurable voter is used to vote and propagate the error
free carriers to the static part of the design. It is able to mask
errors present in one of the TMR domains. Moreover, a
possible SEU affecting the voting partition can be eliminated
simply by reconfiguring its on-chip reconfiguration zone.
However, the drawback of such configuration is still the same
as in all coarse-grained fault tolerant structures. It becomes
evident when errors accumulate or a MBU appears affecting
two TMR replicas. We prevent the accumulation by instantly
reconfiguring the domain in error, i.e. when a bit of the flag
register signals a mismatch in a voting process. However, due
to large size of the replicas, the probability of MBU corrupting
two domains is high. Therefore, we take benefit of our scalable
partial configurations and place in between our adaptive voter
partition thus making possible the on-demand configuration of
medium-grained DMR/TMR structures.

Using smaller modules for triplication and voting their
outputs within the intersections increases the overall robustness
of the design. More precisely, the probability of two errors
affecting two different domains decreases as the same, smaller
block has to be struck by an error in both of the replicas. An
example of a medium-grained TMR configuration is presented
in Fig. 6. The 3rd SB which creates 2 MHz carriers is triplicated
and configured along with the 1st SB which creates 4 MHz
carriers. As can be seen, two voting partitions are placed
between the static part and Block1 and between Block1 and
Block2. These blocks are in charge of creating 4 and 2 MHz
carriers, respectively, along with the material for lower
frequency carriers creation used in the subsequent blocks. The
4 MHz carriers are discarded in the 3rd SB, whereas in the 1st

SB they are propagated through the 2nd voting partition and
returned back to the static part using a simple cover.

The advantage of using medium-grained redundancy over
coarse-grained one can be explained using this example
configuration. If two faults occur in two replicas of the 3rd SB,
where one of them affects Block1 and the other Block2, the
structure will still be able to propagate correct data back to the
output interface. Moreover, an instant repair of the blocks
through reconfiguration will be triggered thus extending the
lifetime of the structure. On the other hand, if the traditional
partial configurations are used for the presented composition,
the occurrence of faults in two PBS 2 configurations would
corrupt the entire structure. In addition, when only one domain
is affected, the recovery process takes longer since larger
domain needs to be reconfigured.

2 MHz

SB3i

2 MHz

SB1i

4 MHz

SB3

2 MHz

•[Block | ^
•1 1 j¿3

Block fr>

* • [Block l #

Block
1

Í
«

J0
n

Fig. 6 An example of a scalable medium-grained TMR configuration –
Demanded 2 MHz carriers from the 3rd SB and 4 MHz carriers from the

1st SB

The presented medium-grained redundancy can tolerate
error accumulation and MBUs to a higher extend. Moreover,
the design is capable of changing the granularity level on
demand. Therefore, it is allowed to make the decision online
on whether to triplicate smaller or larger modules.
Furthermore, when using the scalable modules, DMR and
TMR structures can grow and decrease during runtime at each
change of demand from a triplicated SB. This is achieved by
reconfiguring smaller reconfiguration zones (Fig. 6) which
implies faster and less power consuming adaptation.

In both coarse- and medium-grained redundancies, a soft
error affecting the voting partition can be mitigated by
reconfiguring the affected area. In order to further protect the
voting process we support it with the ICAP-based voting which
enters the configuration memory and compares the actual FF
values corresponding to the domain outputs.

D. The ICAP-based voting: A support for the conventional
hardware-based voting

In order to additionally strengthen the voting process, we
go directly to the present state of the configuration memory
and compare the predetermined FF values that correspond to
the outputs of each partition used in TMR/DMR compositions.
To do so, during the floorplanning step in our implementation
methodology, using LOC and BEL constraints we fix the
registers corresponding to the outputs of the module to
particular slices and FFs within those slices. In this way the bits
corresponding to their initial values (INIT0/INIT1) in the
configuration memory reside within only one CLB frame in
order to accelerate the voting process. This is done for all
partial configurations, including the voter partition where,
instead of the outputs, flag registers and error counters are
constrained. Consequently, using the logic allocation file (*.ll),
which can be created together with the programing file (*.bit),
we can locate the constrained FF bits within a frame.

When a particular module is triplicated, the location of the
bits in the configuration memory that correspond to the outputs
of DMR/TMR domains is known. Although the domains
belong to different clock regions, they reside within the same
frame and have the same position within that frame. Taking
advantage of it, the GCAPTURE command is periodically
issued to the ICAP using our modified enhanced HWICAP
([19], [25]) thus capturing the present state of the configuration
memory. Hence, the actual complement value of the outputs is

Block 2

Block 2
1

E

Block 2

written to their INIT0/INIT1 bits in the configuration memory.
Consequently, a readback of the C L B column is performed
where the output FFs are placed. We repeat the process for
each of the three T M R replicas and extract the bits of interest
from the read configuration. By placing them in only one, 31st

frame of the 36 frame long readback, a significantly faster
extraction process is achieved. Hence, the floorplanning has to
be performed carefully. The extracted bits are then compared
by a processor and if there is a mismatch, two different
scenarios are possible.

The first scenario takes into account the priority of the
conventional hardware-based voter, i.e. verifies whether the
mismatch is recognized by the voter checking the INIT0/INIT1
bits corresponding to the flag and error counter registers.
Therefore, an error present in the voting partition can be
detected. In the second one, the ICAP-based voting takes
precedence and by changing the L U T function through
reconfiguration directs the carriers from the non-corrupted
domain to the output. The second scenario can be used either to
detect the error that occurred in the voting partition or to
completely exclude the voter from hardware in applications
where it is allowed to lose several clock cycles of data before
masking or correcting the fault. In the latter case, multiple
input signature registers (MISRs) could be implemented to
record the data coming from each of the domains between two
consecutive captures.

V . RESULTS AND DISCUSSIONS

In order to evaluate the proposed architecture, the entire
system is implemented on a Xilinx Virtex-5 XC5VFX130T
F P G A . The implementation of the static part of the design,
along with all partial configurations, is done in I S E Design
Suite 14.2 following the methodology presented in this paper.
These implemented partitions are presented in Fig. 7. The
results in terms of device utilization and size in memory for the
voting partition and partial modules used for triplication are
given in TABLE I . We can scale our runtime adaptable D M R and
T M R structures in area such that create carriers in the range
from 8 MHz to 2 MHz. The increased reliability of the system
is achieved at an increased cost in terms of the on-chip area
overhead. In the use case, we lost the opportunity to go up to 1
MHz due to the limitations in terms of the F P G A resources.
Nevertheless, the same principle can be used in every design
with modular properties where reliability is the main concern.

A real case implementation of the example composition
shown in Fig. 6 is presented in Fig. 7. Each module occupies
the height of 2 clock regions. As presented, the voting
partition, put in between the blocks, has the height of 8 clock
regions corresponding to the height of 4 SBs. Its logic is
implemented within one C L B column. The fault injection is
performed in the right part of the chip where the structures are
configured during runtime. In order to accelerate the process
the faults are injected in frames related to the used LUTs to
ensure that it will affect the operation of the design. As
expected, when traditional partial configurations are used to
configure the T M R structures, the injection of two errors in
different reconfiguration zones provided erroneous data at the
output. When injecting the faults in the same positions in the
medium-grained T M R architectures, those faults that affected

TABLE I .
THE DEVICE UTILIZATION AND SIZE OF THE MEMORY FOOTPRINTS

OF THE PARTIAL CONFIGURATIONS USED IN FULLY RECONFIGURABLE
FAULT TOLERANT STRUCTURES

*

Occ.
Slices
Size
[KB]

Voting
Partition

253
(1%)

177

PBS
1

280
(1%)

132

PBS
2

661
(3%)

211

Block
1

333
(1%)

88

Block
2

424
(2%)

120

Cover

8
(1%)

12

TABLE I I .
THE RECONFIGURATION TIME FOR EACH OF THE PARTIAL

CONFIGURATIONS USED IN FULLY RECONFIGURABLE FAULT
TOLERANT STRUCTURES

*

Recovery
time []

Voting
Partition

119

PBS
1

103

PBS
2

192

Block
1

60

Block
2

90

Fig. 7 The implemented partial configurations, the static part of the
design and a real case of the example composition presented in Fig. 6

two domains, where Block1 is affected in one and Block2 in
the other, were masked by our reconfigurable voting
intersections. As a result, fault-free data was detected at the
output. The recovery is determined by the time it takes to
reconfigure the affected domain. The time necessary for the
reconfiguration of each of the modules is presented in TABLE II.

When faults are injected in the composition presented in Fig. 7,
the recovery times are 60 and 80 depending on the block
that is affected. On the other hand, when the faults are injected
in the same locations in its large-grained counterpart, which
uses the conventional partial configuration PBS2, the recovery
time exceeds 192 . Therefore, by narrowing down the fault
affected area in the use case, we achieved the reduction in
recovery time that ranges from 58% to 69%. Moreover, the
size in rad-hard memory of the partial modules given in TABLE I

also favors medium-grained structures as fewer resources have
to be reserved for storing their domain configuration. In the
case when the injected fault affects the voting partition, the
ICAP-based voting is in charge of detecting the fault and
triggering the reconfiguration process. The recovery is
determined by several tasks: GCAPTURE command to the
ICAP; readback of a CLB column; check the INIT0/INIT1 bits
that correspond to the flag registers; and reconfiguration of the
partition. Therefore, the design is able to detect and

consequently mitigate errors present in the voting partition at
the cost of losing several clock cycles of the operation.

In warm redundancy applications, the voter could be
completely excluded from hardware leaving the voting
partition only with a set of MISRs to record the output changes
between two periodical issues of the ICAP-based voting.
However, the optimal capture frequency should be calculated
considering the environmental conditions, requirements and
sensitivity of the design.

V I . CONCLUSIONS

In this paper we have presented a reconfigurable voting
mechanism able to adapt to different modes of operation and
different types of configured fault tolerant structures during
runtime. Taking advantage of the implementation metho­
dology, one memory footprint can be used for the insertion of
voting partitions between the scalable modules thus creating
fully reconfigurable medium-grained redundancy structures.
The design can take advantage of both coarse- and medium-
grained redundancies using conventional and scalable partial
configurations. Results show that when the voting is performed
over smaller, scalable modules the robustness of the entire
design is increased. Moreover, significant savings in terms of
recovery time are obtained using the medium-grained
composition. The performed fault injection provided expected
results, also favoring the finer granularity. Nevertheless, certain
performance capabilities are lost due to the partitioning thus
directly pointing to the price that has to be paid when
increasing the reliability by decreasing the granularity level.
The methodology performed in our runtime adaptable D V B -
O B P can be applied to any other design with modular
properties.

ACKNOWLEDGMENTS

This work was supported in part by Thales Alenia Space
Spain. We gratefully acknowledge the provided equipment.

REFERENCES

[1] Moore, G.E. , "Cramming More Components Onto Integrated
Circuits," Proceedings of the I E E E , vol.86, no.1, pp.82,85, Jan. 1998
doi: 10.1109/JPROC.1998.658762

[2] Xilinx Inc., Partial Reconfiguration User Guide, UG702 (v14.5) April
26, 2013

[3] Underwood, C.I. , "The single-event-effect behaviour of commercial-off-
the-shelf memory devices-A decade in low-Earth orbit," Nuclear
Science, I E E E Transactions on , vol.45, no.3, pp.1450,1457, Jun 1998

[4] Kastensmidt, F.L. ; Sterpone, L. ; Carro, L. ; Reorda, M.S . , "On the
optimal design of triple modular redundancy logic for SRAM-based
FPGAs," Design, Automation and Test in Europe, 2005. Proceedings ,
vol., no., pp.1290,1295 Vol. 2, 7-11 March 2005

[5] de Lima Kastensmidt, F .G. ; Neuberger, G. ; Hentschke, R.F. ; Carro, L. ;
Reis, R . , "Designing fault-tolerant techniques for SRAM-based
FPGAs," Design & Test of Computers, I E E E , vol.21, no.6, pp.552,562,
Nov.-Dec. 2004

[6] Heiner, J . ; Sellers, B . ; Wirthlin, M . ; Kalb, J., " F P G A partial
reconfiguration via configuration scrubbing," Field Programmable Logic
and Applications, 2009. F P L 2009. International Conference on , vol.,
no.,pp.99,104,FPL2009

[7] C . Bolchini, A . Miele, M . D . Santambrogio, “ T M R and Partial dynamic
Reconguration to mitigate S E U faults in FPGAs”, 22nd I E E E
International Symposium on Defect and Fault Tolerance in V L S I
Systems, D F T , 2007.

[8] A. Jacobs, G. Cieslewski, A. D. George, A. Gordon-Ross, und H. Lam,
„Reconfigurable Fault Tolerance: A Comprehensive Framework for
Reliable and Adaptive FPGA-Based Space Computing“, ACM Trans.
Reconfigurable Technol. Syst., Bd. 5, Nr. 4, S. 21:1–21:30, Dez. 2012.

[9] Ostler, P.S.; Caffrey, M.P.; Gibelyou, D.S.; Graham, P.S.; Morgan,
K.S.; Pratt, B.H.; Quinn, H.M.; Wirthlin, M.J., "SRAM FPGA
Reliability Analysis for Harsh Radiation Environments," Nuclear
Science, IEEE Transactions on , vol.56, no.6, pp.3519,3526, Dec. 2009

[10] Sari, A.; Psarakis, M., "Scrubbing-based SEU mitigation approach for
Systems-on-Programmable-Chips," Field-Programmable Technology
(FPT), 2011 International Conference on , vol., no., pp.1,8, 12-14 Dec.
2011

[11] Sterpone, L.; Ullah, A., "On the optimal reconfiguration times for TMR
circuits on SRAM based FPGAs," Adaptive Hardware and Systems
(AHS), 2013 NASA/ESA Conference on , vol., no., pp.9,14, 24-27 June
2013

[12] Carmichael, "Triple module redundancy design techniques for Virtex
FPGAs," In Xilinx Application Notes XAPP197 July 2006.

[13] Schweizer, T.; Schlicker, P.; Eisenhardt, S.; Kuhn, T.; Rosenstiel, W.,
"Low-Cost TMR for Fault-Tolerance on Coarse-Grained Reconfigurable
Architectures," Reconfigurable Computing and FPGAs (ReConFig),
2011 International Conference on , vol., no., pp.135,140, Nov. 30 2011-
Dec. 2 2011

[14] Legat, U.; Biasizzo, A.; Novak, F., "Self-reparable system on FPGA for
single event upset recovery," Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC), 2011 6th International Workshop on ,
vol., no., pp.1,6, 20-22 June 2011

[15] Xin Wang, "Partitioning Triple Modular Redundancy for Single Event
Upset Mitigation in FPGA," E-Product E-Service and E-Entertainment
(ICEEE), 2010 International Conference on , vol., no., pp.1,4, 7-9 Nov.
2010

[16] Anwer, J.; Platzner, M.; Meisner, S., "FPGA Redundancy
Configurations: An Automated Design Space Exploration," Parallel &
Distributed Processing Symposium Workshops (IPDPSW), 2014 IEEE
International , vol., no., pp.275,280, 19-23 May 2014

[17] Kretzschmar, U.; Astarloa, A.; Lazaro, J.; Garay, M.; Del Ser, J.,
"Robustness of different TMR granularities in shared wishbone
architectures on SRAM FPGA," Reconfigurable Computing and FPGAs
(ReConFig), 2012 International Conference on , vol., no., pp.1,6, 5-7
Dec. 2012

[18] Bolchini, C.; Miele, A.; Sandionigi, C., "A Novel Design Methodology
for Implementing Reliability-Aware Systems on SRAM-Based
FPGAs," Computers, IEEE Transactions on , vol.60, no.12,
pp.1744,1758, Dec. 2011

[19] Veljkovic, F.; Riesgo, T.; de la Torre, E.; Regada, R.; Berrojo, L., "A
run time adaptive architecture to trade-off performance for fault
tolerance applied to a DVB on-board processor," Adaptive Hardware
and Systems (AHS), 2014 NASA/ESA Conference on , vol., no.,
pp.143,150, 14-17 July 2014

[20] Navas, B.; Oberg, J.; Sander, I., "The upset-fault-observer: A concept
for self-healing adaptive fault tolerance," Adaptive Hardware and
Systems (AHS), 2014 NASA/ESA Conference on , vol., no., pp.89,96,
14-17 July 2014

[21] C. Beckhoff,D. Koch, and J. Torresen,"The Xilinx Design Language
(XDL): Tutorial and use cases," in ReCoSoC 2011 6th International
Workshop, 2011

[22] http://rapidsmith.sourceforge.net/

[23] C.Lavin, M. Padilla, J. Lamprecht, P. Lundrigan, B. Nelson and B.
Hutchings, "RapidSmith: Do-It-Yourself CAD Tools for Xilinx
FPGAs,"inFPL'11, Greece, 2011

[24] Wei He; Otero, A.; de la Torre, E.; Riesgo, T., "Automatic generation of
identical routing pairs for FPGA implemented DPL
logic," Reconfigurable Computing and FPGAs (ReConFig), 2012
International Conference on , vol., no., pp.1,6, 5-7 Dec. 2012

[25] Otero, A.; Morales-Cas, A.; Portilla, J.; de la Torre, E.; Riesgo, T., "A
Modular Peripheral to Support Self-Reconfiguration in SoCs,"Digital
System Design: Architectures, Methods and Tools (DSD), 2010 13th
Euromicro Conference on, vol., no., pp.88,95, 1-3 Sept. 2010

http://rapidsmith.sourceforge.net/

