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Abstract 

Cosmic-ray soil moisture sensors have the advantage of a large measurement footprint 

(approximately 700 m in diameter) and are able to operate continuously to provide area-

averaged near-surface (top 10-20 cm) volumetric soil moisture content at the field scale. This 

paper presents the application of this technique at four sites in southern England over almost 

3 years. Results show the soil moisture response to contrasting climatic conditions during 

2011-2014, and are the first such field-scale measurements made in the UK. These four sites 

are prototype stations for a UK COsmic-ray Soil Moisture Observing System (COSMOS-

UK), and particular consideration is given to sensor operating conditions in the UK. 

Comparison of these soil water content observations with the Joint UK Land Environment 

Simulator (JULES) 10 cm soil moisture layer shows that these data can be used to test and 

diagnose model performance, and indicates the potential for assimilation of these data into 

hydro-meteorological models. The application of these large-area soil water content 

measurements to evaluate remotely-sensed soil moisture products is also demonstrated. 

Numerous applications and the future development of a national COSMOS-UK network are 

discussed. 

Keywords 

Soil water content; soil moisture; COSMOS; COSMOS-UK; JULES; soil moisture deficit; 
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1 Introduction 

Soil moisture plays a central role in the hydrological cycle and surface energy balance. As 

a state variable, knowledge of soil moisture (SM) is required for modelling of water 

resources, floods and droughts, eco-hydrology, agronomy, weather prediction, climate 

forecasts and modelling of greenhouse gas exchanges. In meteorological models the soil 

moisture content is estimated at many depths as part of the land-surface scheme (e.g. Best et 

al., 2011). The performance of this soil moisture component requires evaluation, and has 

sometimes been shown to have large bias errors when compared to in situ observations. For 

example, the soil moisture product from the European Centre for Medium Range Weather 

Forecasting (ECMWF) has been shown to have constant bias errors of 0.1-0.2 m
3 

m
-3

 for four 

test sites in the US (Leroux et al., 2014). However, there is generally very little in situ data 

with which to compare model results. Recently, progress has been made in assimilation of 

satellite soil moisture products, such as those from the European Space Agency’s Soil 

Moisture and Ocean Salinity (SMOS) mission and the Advanced Scatterometer (ASCAT) on 

the Metop satellite (Dharssi et al., 2011). Satellite SM products have the key advantage of 

global or quasi-global coverage, but with disadvantages of relatively poor spatial resolution 

(≈50 km), shallow measurement depth (circa 5 cm) and technical interference caused by 

vegetation and radio communications (Al-Yaari et al., 2014). Notwithstanding this, these data 

can be used to improve forecast models (Dharssi et al., 2011). There is an urgent need to 

provide ground truth observations for satellite SM products, especially as higher spatial 

resolution products become available, such as NASA’s Soil Moisture Active Passive (SMAP) 

mission (10 km resolution) (Entekhabi et al., 2010), or Sentinel-1 (resolution below 100 m) 

(Paloscia et al., 2013).  
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There are very few in situ field data representative of a scale that is comparable with 

model or satellite data (i.e. measurements at the field-scale or greater) which average across 

spatial heterogeneity and could provide systematic replication across the UK. The advent of a 

new technique, the cosmic-ray soil moisture sensor (CRS), to measure soil moisture area-

averaged over a footprint of about 700 m in diameter (Zreda et al., 2008), enables a step-

change in our monitoring capability. In this paper we describe preliminary studies undertaken 

as part of a new initiative to establish a COsmic-ray Soil Moisture Observing System in the 

United Kingdom (COSMOS-UK) to systematically measure volumetric soil moisture content 

across the UK. 

Until a few years ago, most ground-based soil moisture measurements (with the notable 

exceptions of lysimeters and passive microwave techniques), have only been able to sample 

very small volumes of soil (cubic decimetres) (Robinson et al., 2008). Although there is a 

large variety of ‘point’ sensors commercially available, they are limited to representing the 

small-scale heterogeneity of soils unless numerous point sensors are deployed at a particular 

site, which is both costly and inconvenient. Whilst point sensors may remain useful for many 

applications such as irrigation control and process studies (and they are also very low cost), 

they are in general unlikely to be representative of the average soil moisture content across 

hundreds of meters, unless soil properties happen to be highly uniform at that scale.  

The CRS measurement principle is similar to the neutron probe developed at Wallingford, 

UK (Institute of Hydrology, 1981), however it does not require an artificial radioactive 

neutron source but instead utilises naturally occurring neutrons generated by cosmic rays. 

This brings both practical and logistical advantages and dramatically increases the potential 

of SM monitoring by neutron detection, since the CRS can be deployed in the field 

unattended, for long-term or semi-permanent installations, and may provide continuous 

records of soil moisture over several years or decades. The technique is non-invasive: the 
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neutron detectors are installed just above the ground so access tubes are not required, and a 

single CRS passively measures the whole footprint from a position at the centre. The biggest 

advantage offered by the CRS is the scale of the measurement: a circular footprint with a 

radius of approximately 350 m. Observations of soil moisture at this scale are hugely 

valuable, yet impractical to obtain routinely with point measurements simply because of the 

vast number that would be required. The volumetric soil moisture content obtained from the 

CRS is spatially-integrated and representative of near-surface conditions. Each probe detects 

fast neutrons which have been generated from cosmic rays. At the Earth’s surface, fast 

neutrons are absorbed by hydrogen atoms (predominantly in water molecules), so fewer 

neutrons detected implies a higher water content (Desilets et al., 2010). The neutron count is 

thus related to SM and other stores of hydrogen, such as that contained within biomass (Franz 

et al., 2012). 

Desilets et al. (2010) suggested that the CRS could be used at a fixed site for in situ SM 

monitoring, or in a moving vehicle for mapping soil moisture over large areas. The practical 

application and challenges of mapping soil moisture over large areas using the cosmic-ray 

rover were first described by Chrisman and Zreda (2013). Suitable near-surface (0 – 5 cm) 

accuracy of the rover for comparison with satellite SM products was reported by Dong et al. 

(2014), who found the rover to provide a valuable technique for the calibration and validation 

of microwave remote sensing missions. 

The next section details the site characteristics of four prototype stations. The standardised 

COSMOS-UK prototype monitoring station is described in Section 2.2, and data processing 

in Section 2.3. The field calibration methodology is set out in Section 2.4. Soil moisture data 

from the four sites during an exceptionally wet winter 2013/14 are presented. A longer time 

series (almost 3 years) for two sites are analysed and compared with satellite SM data 
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(ASCAT) and land-surface model output (Section 4). Finally, a summary and outlook for the 

development of a national COSMOS-UK network is given in Section 5. 

2 Methodology 

2.1 Description of sites 

Figure 1 shows the location of the four prototype COSMOS-UK stations in southern 

England. These have been operational as standardised prototype stations since late 2013; 

however Chimney Meadows (CHIMN) and Sheepdrove Organic Farm (SHEEP), have CRS 

datasets extending back to 2011 (Table 1). 

The CHIMN site is low-lying (66 m Above Ordnance Datum, AOD) within 500 m of the 

upper River Thames, with a shallow water table, and is on fairly natural (restored) meadow 

grassland (http://www.bbowt.org.uk/reserves/chimney-meadows). Further site information is 

given in Table 1. In contrast, SHEEP is high on the West Berkshire Downs (183 m AOD), 

and the underlying geology is highly permeable white chalk, with the water table typically 

many tens of meters below the surface. The Waddesdon Manor (WADDN) site is on a gentle 

slope but poorly drained due to the clay to loam soil type overlaying clay formations. At 

Wytham Woods (WYTH1), the soils and underlying geology are clays over mudstone 

downslope of the location and loams over sandstone and limestone upslope. The hydrological 

response is therefore complex, with the potential for spring line seepage development. Both 

SHEEP and WADDN are on grazed grassland with predominantly beef cattle at SHEEP and 

sheep at WADDN. SHEEP is under organic management, and this is reflected in the 

relatively high soil organic matter content (Table 1). WYTH1 is an area of protected ancient 

deciduous woodland which is under natural management, with little or no human 

intervention. 

http://www.bbowt.org.uk/reserves/chimney-meadows
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2.2 Instrumentation 

Each prototype COSMOS-UK station (Figure 2) is equipped with research-quality 

meteorological and soil monitoring sensors. Large-area soil moisture is provided by the CRS 

probes (CRS-1000/B, Hydroinnova, New Mexico). Point measurements of soil moisture are 

also available from two near-surface TDT (time domain transmissometry) probes (SDI-12 

Digital Soil Moisture Transducer, Acclima, Idaho) installed at a depth of 0.10 m and from a 

profile probe (Trime PICO-Profile, IMKO, Germany) measuring at three depths (0.15, 0.40 

and 0.65 m). Soil temperature is measured by the near-surface TDT probes and also at five 

depths (0.02, 0.05, 0.10, 0.20 and 0.50 m) by a thermocouple profile (STP01, Hukseflux, The 

Netherlands). Two soil heat flux plates (HFP01SC, Hukseflux, The Netherlands) are installed 

at a depth of 0.03 m; these plates have a self-calibrating feature to maximise measurement 

accuracy; the in situ calibration is performed once a day. The net radiation is calculated from 

the four components recorded individually, i.e. incoming and outgoing shortwave and 

longwave radiation (NR01, Hukseflux, The Netherlands). An automatic weather station 

(MetPak, Gill Instruments, UK) provides key meteorological variables (screen air 

temperature, relative humidity and barometric pressure) at a height of 2.0 m. Wind speed and 

direction are measured using a 2-D sonic anemometer (Windsonic, Gill Instruments) mounted 

directly above the Metpak temperature screen. Precipitation is measured using a weighing 

precipitation gauge (Pluvio
2
, Ott, Germany) capable of giving precipitation amount and 

intensity. At WYTH1, where the tree canopy is many metres above the surface, the automatic 

weather station and four-component radiometer are installed above the canopy, along with a 

funnel which feeds the weighing rain gauge installed at ground level. A camera (S14, 

Mobotix, Germany) with almost 360° field of view gives a visual record of the land surface 

(e.g. state of vegetation, snow cover, ponding water) as well as atmospheric visibility and 

cloud cover. Data are logged (CR3000, Campbell Scientific Ltd., UK) at 30-min intervals. 
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Rainfall amount and intensity are also available at 1-min intervals. Each station is powered 

from a battery and solar panels.  

At CHIMN, SHEEP and WYTH1 (where there is a large biomass), bare CRS tubes are 

installed to measure thermal neutrons, as well as the basic setup using moderated tubes 

measuring fast neutrons (from which SM is ordinarily derived, Section 1). The interpretation 

of count rates of neutrons of different energies is a topic of ongoing research but it is thought 

that additional information about the hydrogen stores can be inferred, such as melting and 

accumulation of snow (e.g. Desilets et al., 2010; Rivera Villarreyes et al., 2011; Zreda et al., 

2012). 

In the UK, fast neutron count rates are relatively low so counts must be averaged over long 

time periods to sufficiently reduce counting noise, imposing a limit on the temporal 

resolution. Similar results have been found for other cool and wet northern latitude lowlands, 

such as for some sites in Germany (Bogena et al., 2013). Firstly, for low altitude sites (which 

have relatively high air pressure, i.e. relatively high air density), fewer high energy neutrons 

reach the ground as they get moderated to lower energies as they travel through the 

atmosphere. Secondly, high soil moisture content means that fewer fast neutrons escape from 

the soil – the measurement principle itself. Thirdly, due to the non-linear calibration curve, 

under wet conditions a given noise level in the count rate is interpreted as larger change in 

SM than would be the case under drier conditions. 

2.3 Data collection and derivation of soil water content 

A main objective of the prototype COSMOS-UK stations is to supply research-quality 

meteorological and soil data in near-real time, which can be assimilated into hydro-

meteorological models and flood forecasts or to inform about surface conditions on-site. To 

accomplish this, each station is fitted with a modem which transmits data back to a central 
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server every hour. Automated scripts check the most recently collected data and write to a 

database linked to the COSMOS-UK website (ceh.ac.uk/cosmos), allowing remote viewing 

of data. 

Basic quality control procedures are applied to the automated data stream. These reject 

data under the following circumstances: when there is a known sensor fault; if an instrument 

diagnostic flag has been set; if data exceed physically reasonable thresholds; and if the 

sample period is too short. Neutron counts are also subjected to a simple despiking algorithm 

based on the change in counts between adjacent data points. However, there may be some 

issues which require more sophisticated quality control and diagnosis and are not flagged up 

in near-real time. For this reason, real-time data are provisional and subject to change 

following manual verification offline. 

Estimating soil moisture from measured neutron counts requires the application of several 

corrections followed by calibration based on field samples. For the COSMOS-UK data, the 

following procedure is applied: 

1. Neutron counts and meteorological data are averaged to 60 min. 

2. Several correction factors are applied to the neutron counts. 

a. Neutron counts are corrected for the influence of atmospheric pressure (Hydroinnova, 

2013), 

  0exp ppFp   ,        (1) 

where Fp is the pressure correction factor and β is the barometric pressure coefficient. 

Barometric pressure, p, is measured on site (Section 2.2) and an arbitrary value of 1000 

hPa is used for p0 (note that the corrected counts are not directly comparable across the 

network without additional consideration of the site altitude – for COSMOS-UK this is 

http://www.ceh.ac.uk/cosmos
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inherently integrated into the SM calibration). A value of β = 1/130 hPa
-1

 was used 

across all sites, although there is a small dependence on latitude (Zreda et al., 2012). 

b. Neutron counts are corrected for the influence of atmospheric water vapour (Rosolem 

et al., 2013), 

 00054.01 QQFQ  ,       (2) 

where FQ is the humidity correction factor, Q is absolute humidity (in g m
-3

) and Q0 is 

the average absolute humidity (in g m
-3

) during calibration. Absolute humidity is 

calculated from temperature and relative humidity measured on site (Section 2.2). 

c. Neutron counts are corrected for variations in background intensity based on data 

collected at Jungfraujoch International Geophysical Year (IGY) neutron monitoring 

station (JUNG) and available from the neutron monitoring database (nmdb.eu), using 

the equation 

C

C
FC

0 ,         (3) 

where FC is the intensity correction factor, C is the count rate at Jungfraujoch 

monitoring station and C0 is the count rate at Jungfraujoch monitoring station during 

calibration. 

d. Corrected neutron counts (Ncorr) are calculated by multiplying the raw neutron counts 

(Nraw) by each of the correction factors: 

CQprawcorr FFFNN  .        (4) 

Unlike the COSMOS network in the United States, no adjustment is currently made to 

account for the detection sensitivity between individual CRS units (i.e. the individual 

CRS variation in sensitivity due to manufacturing tolerances etc.). Hence corrected 
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neutron counts should not be compared equivalently between COSMOS-UK sites. 

However, these differences are implicitly accounted for in the soil moisture field 

calibration. In the future, a sensor-specific sensitivity factor will be provided following 

comparison of each CRS probe with a reference CRS unit at a standard location.  

3. The corrected neutron counts are averaged up to (i) a 6-h running mean (based on the 

previous 6 h and available hourly) and (ii) 24-h block averages (available daily). It is 

recommended that 6-h or 24-h soil moisture data are used to reduce the noise associated 

with the cosmic-ray technique, particularly for UK conditions (Section 2.2). The corrected 

neutron counts are converted to volumetric soil moisture, 

w

bd

corrw

bd
gv SOCa

a
N

N

a


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0     (5) 

where a0, a1 and a2 are conversion coefficients with the values 0.0808, 0.372 and 0.115, 

respectively (Desilets et al., 2010), θv is the volumetric soil moisture [m
3
 m

-3
], θg the 

gravimetric soil moisture [g g
-1

], ρbd the dry bulk density [g cm
-3

], ρw the density of liquid 

water (≈1 g cm
-3

), τ the fraction of lattice and bound water [g g
-1

] and SOC the soil organic 

carbon [g g
-1

]. N0 is found by rearranging this equation and inserting the soil moisture 

value obtained from the field calibration (Section 2.4) and the corrected neutron count rate 

observed during calibration. 

The number of fast neutrons detected by a CRS probe at the surface decays non-linearly 

with depth in the soil (the rate of decay increases with increasing SM), i.e. most of the 

measured signal comes from the near-surface of the soil, whilst there is still a finite 

influence of deeper soil layers (Zreda et al., 2008). The effective measurement depth (z*, 
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cm) is defined as the soil depth above which 86% of the measured neutron counts are 

expected to have originated and is calculated according to (Franz et al., 2013), 

0829.0)(

8.5
*





SOC

z

w

bd
v 






.       (6) 

 

2.4 Calibration of the cosmic-ray soil moisture sensor 

An independent measurement of the average value of soil moisture in the CRS footprint is 

required for its calibration (Section 2.3). The first part of this procedure entails taking field 

soil samples; the second part comprises laboratory sample analysis. The field soil sampling 

procedure adopted follows Franz (2012) and Zreda et al. (2012) and therefore only brief 

details are presented herein.  

Soil samples for volumetric soil moisture and bulk density determination are taken from 

18 locations centred on the CRS probe: in each of six compass directions (0°, 60°, 120°, 

180°, 240° and 300°) and at each of three distances (25, 75 and 200 m) from the probe. These 

samples are equally weighted due to exponentially declining sensitivity with distance from 

the probe. The exact sampling location can be varied somewhat to ensure that it is 

representative of the nearby area. At each location, samples are taken from six depths 

covering 0 to 30 cm below ground level, in progressive 5 cm increments. This procedure 

gives a target total of 108 samples, although it may not be practical at all sites depending on 

soil thickness and accessibility of sampling points. The soil samples are taken using standard 

50 mm internal diameter, 51 mm length, sample rings (Eijkelkamp, Giesbeek, The 

Netherlands), giving a volume of 100 cm
3
. Having removed any surface vegetation and 

augered to the appropriate starting depth, the rings are inserted in the vertical orientation 
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using a closed ring holder (Eijkelkamp kit 07.53.SC). The samples are then transferred to 

sealed plastic bags and returned to the laboratory for analysis, where the initial mass of each 

sample is recorded. The samples are oven dried at 105°C for 36 hours and the mass recorded 

again allowing volumetric soil moisture and dry bulk density to be calculated (e.g. Gardner, 

1986). Analysis of sample soil moisture variation with depth allows the depth-averaged value 

which most closely corresponds to the estimated probe effective depth at the time of sampling 

to be identified. This value is then used as the reference volumetric soil moisture content for 

calibration. Soil samples for the determination of lattice and bound water and soil organic 

carbon were taken following the sampling procedure outlined in Franz (2012). For further 

details see Blake (2015). 

2.5 Additional extended time-series soil moisture data 

CRS-1000/B probes have been deployed at the CHIMN and SHEEP sites since late 2011. 

In late 2013 these sites were upgraded to the COSMOS-UK station specification (Section 

2.2). The same CRS probes were kept at each site, so that the calibration can be applied 

retrospectively. As far as possible, data were processed analogously to the procedure outlined 

above (Section 2.3), although there were some differences in the instrumental setup. The CRS 

probes were initially deployed with their own data loggers (Hydroinnova) and data were 

collected at hourly intervals, although not on the hour. Neutron counts were adjusted to give 

data on the hour by linear interpolation. The required meteorological data for correction of 

neutron counts were provided by a nearby station in Swindon, Wiltshire (20-30 km from the 

sites, Ward et al. (2013)). Hourly p and Q were adjusted to provide more appropriate values 

for each site, based on linear regression of concurrent data (03 October 2013/24 October 

2013 to 31 January 2014 for CHIMN/SHEEP). The historical data from these sites has been 

merged with the current COSMOS-UK data stream, yielding a long time series of soil 
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moisture extending back to 2011. CRS data were removed from both sites during snowy 

periods (05-06 and 10-12 Feb 2012, 18-26 Jan 2013), from CHIMN for one spuriously high 

SM reading concurrent with surface-water ponding (06 Jan 2014) and from the SHEEP 

dataset during summer 2013 when there was a suspected probe fault. Results from these two 

sites are presented in Section 4.1. 

 

3 Cosmic-ray soil moisture sensor correction factors for UK conditions 

Figure 3 shows raw neutron counts (Nraw) and the correction factors applied to calculate 

the corrected counts (Ncorr) for the CHIMN site. Most of the variation in the raw neutron 

counts closely follows changes in atmospheric pressure (Figure 3a, b), although inverted 

because the intensity of neutrons reaching the Earth’s surface decreases when the pressure 

(air density) is greater (Rivera Villarreyes et al., 2011; Zreda et al., 2012). The UK climate is 

subject to large variations in pressure (almost 80 hPa in Figure 3b), making the pressure 

correction factor, Fp, the most significant, ranging from 0.76 to 1.32 in Figure 3b. By 

comparison, the pressure correction is less than about 10% for the Santa Rita site in Arizona 

presented in Zreda et al. (2012), see their Figure 11. Additionally, neutron count rates are 

comparatively low in the UK because much of the land is close to sea-level (whereas the 

Santa Rita site is at ≈ 990 m elevation). The humidity correction factor is small, varying 

between about 0.98 in winter and 1.04 in summer (Figure 3c). The intensity correction is also 

small (usually < 5%, but with occasional spikes) and increases slightly over the study period 

to account for the decline in background counts (Figure 3d). It is primarily the large 

magnitude of Fp which means that it is only after the correction factors have been applied that 

patterns in the count rate start to resemble patterns in soil moisture (Figure 3e). The shapes of 
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these patterns are inverted between Ncorr and calculated soil moisture because higher soil 

moisture reduces the neutron count. 

 

4 Results 

4.1 Results from the Chimney Meadows and Sheepdrove Organic Farm sites 

Near-surface soil moisture derived using the cosmic-ray method is presented in Figure 4 

for CHIMN (04 August 2011 to 31 May 2014) and SHEEP (26 November 2011 to 31 May 

2014). Over this period, southern England experienced extremes in groundwater and soil 

moisture levels driven by a rainfall deficiency in 2011 through to spring 2012, followed by 

exceptionally wet weather during 2012 and in winter 2013/14. To give some context for the 

observed soil moisture, rainfall data and sunshine hours from CEH Wallingford 

Meteorological Station, Wallingford, Oxfordshire (30-40 km from the sites) are provided 

(Figure 4, Figure 5). 

The persistently low rainfall in 2011 raised concerns over drought and water resources. A 

heat wave at the start of October 2011, followed by relatively warm temperatures for the time 

of year, further depleted soil moisture via evapotranspiration during autumn 2011 (to levels 

comparable with summer 2013, Figure 4a). Soil moisture remained fairly constant and below 

saturation (0.3-0.4 m
3
 m

-3
) during winter 2011/12, until a noticeable drop, coinciding with 

warm sunny weather, occurred at the end of March 2012. This was followed by a significant 

sustained increase in soil moisture in April 2012, when 2-3 times the normal amount of rain 

fell (Figure 5) making this month the wettest April on record (Met Office, 2012). Another 

rapid decline in soil moisture at the end of May coincides with a run of clear-sky days 

without rain. This was the first extended sunshine and warm weather since March and 

promoted rapid development of vegetation; the energy input from solar radiation was large 
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and evapotranspiration rates were high during this period. Summer 2012 was very wet (soil 

moisture exceeded 0.4 m
3
 m

-3
 in July at CHIMN). Most of September 2012 was fairly dry 

and more sunny weather led to the observed reduction in soil moisture, which ended suddenly 

with heavy rain in late September. Wet weather continued through winter 2012/13. In 

summer 2013 the effect of warm dry spells is evident. Depletion of soil moisture coincides 

with periods of sunny weather but intense rain regularly replenishes soil moisture (e.g. late 

July and early September 2013). This effect is most evident in near-surface soil, as monitored 

by the CRS. Winter 2013/14 was exceptionally wet, through to February 2014 and many 

regions experienced flooding (Huntingford et al., 2014). Soil moisture is noticeably higher 

during winter 2012/13 and 2013/14 than during 2011/12 most likely due to the very low 

rainfall in 2011. In March 2014, the surface began to dry out as summer approached and 

rapid depletion of soil moisture is again seen when solar radiative input is high. In 2012, the 

soil moisture is higher at the end of the year than at the start and there is little evidence of an 

annual cycle; 2013 follows a more typical seasonal pattern in this respect, with soil moisture 

depletion in the spring through to summer. These results confirm the ability of the CRS to 

monitor the near-surface soil moisture response to wetting and drying events at the daily and 

seasonal timescale for UK conditions. 

The time series suggests that soil moisture is generally slightly lower at SHEEP than at 

CHIMN (the difference is 0.04 m
3
 m

-3
 on average), more so when the soil is moist, such as 

during summer 2012, winter 2012/13 and winter 2013/14. Whilst SHEEP is elevated, with 

the water table some tens of metres below the surface, and has well-drained chalky soils, 

CHIMN is low-lying with clay soils (Table 1). The shallow water table at CHIMN likely 

impedes drainage during winter; some surface water ponding was observed in the station’s 

camera images down-slope of the site (but still within the CRS footprint) in early January 

2014. Since the CRS responds to all surface water (hydrogen), ponded water will increase the 
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derived SM to values above saturation; and in that sense introduces an error into the SM 

measurement. These data have been removed here (Section 2.5) but detection of surface 

water may be useful as a measure of the total available water, if data can be interpreted 

correctly by hydrological models. 

Since the effective measurement depth depends on soil moisture (Equation 6), it varies 

with time (Figure 4b). However, even over these contrasting years the variation in effective 

depth is reasonably small, with daily averages ranging from about 0.08 m (during the wettest 

conditions) to 0.17 m (in drier conditions). There is a seasonal (SM-dependent) bias because 

the measurement depth is deeper under drier conditions. This is not an uncommon 

characteristic of measurement techniques but should not be forgotten when interpreting data. 

The effective measurement depth is usually slightly shallower at CHIMN compared to 

SHEEP (the average difference is 0.01 m), reflecting the generally higher SM at CHIMN. 

Due to the wetter soils in the UK compared with many COSMOS sites in the US, these 

effective depths are much smaller than the value of 0.76 m suggested by Zreda et al. (2008) 

for dry soils, but comparable to the value of 0.12 m for wet soils. For ‘relatively wet’ soils in 

Wüstebach, Germany, the effective depth does not exceed 0.30 m (Bogena et al., 2013). 

The large footprint of CRS sensors facilitates comparison with remote sensing products 

and land-surface models representative of much larger scales than point measurements. A 

daily soil moisture index is available from the Advanced Scatterometer (ASCAT), which 

supersedes the ERS scatterometer (Wagner et al., 1999). The ASCAT product is a 

dimensionless relative measure of soil moisture (the SM index), varying between 0 and 1 for 

the driest and wettest conditions, respectively (Brocca et al., 2011). Data are representative of 

very near-surface soil moisture: 0.005-0.03 m soil depth (Brocca et al., 2010). COSMOS-UK 

data are compared to the ASCAT product for the nearest pixel to each site on a 12.5-km grid 
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(Figure 6). The CRS data have also been scaled to give a soil moisture index, based on the 

minimum and maximum volumetric soil moisture content values during the study period. 

In general, the ASCAT and CRS data capture the same temporal trends. There is 

particularly good agreement in the timing of SM variations from September to December 

2013, when intense rainfall leads to sudden increases in SM. In winter 2012-13 and winter 

2013-14, CRS and ASCAT SM indices are close to 1, whereas ASCAT does not capture the 

consistently low observed soil moisture in winter 2011/12. Overall, the ASCAT data exhibit 

larger fluctuations, which is to be expected given that the data are representative of very near-

surface soil moisture. During summer (May 2012 and June-July 2013) there are some 

differences in timing between CRS and ASCAT data, which may be partly due to vegetation 

effects in the ASCAT data. For the period presented here, agreement between the techniques 

is better at SHEEP than CHIMN. This may be partly due to a greater amount of vegetation 

during summer at CHIMN (a hay meadow) compared to the short grass at SHEEP which is 

fairly continuously grazed, and how well each site represents the typical land cover for the 

whole ASCAT 12.5 km x 12.5 km pixel. 

Modelled daily SM from the Joint UK Land Environment Simulator (JULES model, Best 

et al., 2011; Clark et al., 2011) is compared with the CRS data in Figure 7. Model (version 

4.0) output was generated for the near-surface soil layer (0.10 m depth). The model was run 

in standalone mode with the meteorological forcing provided by the Climate Hydrology 

Ecology Support System (CHESS) driving data (daily data with a spatial resolution of 1 km; 

Robinson et al. (2016)). The daily meteorological data were further disaggregated within the 

model to provide a diurnal cycle. The soil hydraulic properties are based on Brooks and 

Corey (1964). Land cover of 100% C3 grass was assumed. Generally, the model captures the 

observed trends in SM reasonably well, particularly at CHIMN. There is remarkably good 

agreement between model and observations at CHIMN throughout the first half of 2012; 
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during wetter conditions in July and October-December 2012 the model underestimated the 

observations. At SHEEP, JULES consistently underestimates the CRS data, although wetting 

and drying trends are well matched. Model underestimation may be related to the soil 

saturated moisture content parameter, which acts as an upper limit. Extending this 

comparison over a longer period would be informative, but unfortunately the required driving 

meteorological data for JULES is currently only available up to the end of 2012. It is 

anticipated that comparisons between model output and observations at more prototype 

stations will be highly valuable for model diagnostics and development. 

 

4.2 Winter 2013-14 

Results from the four prototype COSMOS-UK sites are shown from 01 October 2013 to 

31 May 2014 (Figure 8). This period covers the exceptionally wet and stormy weather during 

winter 2013/14 (Huntingford et al., 2014; Met Office and Centre for Ecology and Hydrology, 

2014) and the subsequent soil moisture depletion in spring 2014. The time series for 

WADDN and WYTH1 begin from their respective installation dates (04 and 22 November 

2013, Table 1). The gap in the data from WYTH1 is due to loss of power in December 2013. 

At all sites, the soil moisture is seen to respond to precipitation patterns, particularly the 

heavy rain at the end of December 2013 and dry periods in mid-April and mid-May 2014. For 

the period shown in Figure 8, SHEEP tends to have the driest soils and WYTH1 the wettest. 

The variability is large for WADDN and WYTH1, in accordance with expectations that 

wetter sites have lower neutron counts and thus higher associated uncertainties. At WADDN 

the relatively high maximum SM values may be due to surface water ponding associated with 

slow infiltration into the low permeability clay soil. This surface water would be integrated 

into the CRS soil moisture value. At WYTH1, the large peaks in the 6-h SM data are well 
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above what would usually be expected at saturation and are probably due to a mixture of 

noise and the contribution of other water stores (e.g. intercepted water stored in the canopy) 

which lower the neutron counts. Intercepted water stored in the tree canopy, moisture in 

above-ground biomass and water trapped in the litter layer (Bogena et al., 2013) potentially 

complicate the results for WYTH1 and may be partly responsible for the generally very high 

SM values obtained; this will be a subject of future study.  

These initial results demonstrate the capability of the CRS sensors and the prototype 

COSMOS-UK stations to capture (i) the SM response to changing meteorological conditions 

at daily to yearly timescales and (ii) differences in SM between sites with similar weather but 

different soil types and land cover. The findings also suggest important areas for further 

research, both for the CRS technique in general (e.g. other hydrogen sources, surface water) 

and for the conditions typical of the UK and other similar environments. 

 

5 Summary and outlook 

Initial results from the four prototype COSMOS-UK sites demonstrate the response of the 

large area CRS SM measurement to precipitation and drying processes (drainage and 

evapotranspiration). The temporal trends in SM over weeks and months across these four 

sites, within 50 km of each other (and thus subject to similar weather) are correlated as would 

be expected from the climatic drivers. However, the detailed response of each site is different 

– there is clear variability in the SM dynamics, particularly at shorter timescales, and the 

absolute volumetric soil water content. These inter-site differences in soil moisture are likely 

due to the differences in soil characteristics and underlying geology and water table depth. 

This shows the importance of sampling a range of soils and geology even under very similar 

climatic conditions. 
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There may be site-specific influences on the performance of the CRS technique, for 

example differences in the effective depth of measurement, and perhaps some other as yet 

unknown influences. Further research is required to investigate and determine such factors. 

One or more prototype COSMOS-UK sites will be instrumented with a large array of point 

soil moisture sensors, to form a Test and Validation Site (TVS), analogous to the Santa Rita 

CRS site in the US (Franz et al., 2012). The TVS will primarily provide independent SM data 

which is representative of the CRS footprint, and will enable fundamental research into the 

performance of the technique. There are key questions that will be addressed in this research, 

such as how well the effective depth and spatial footprint models work under real field 

conditions. 

Comparison with the JULES 0.10 m SM layer shows excellent application to both model 

diagnostics and potential for data assimilation. For the first time in the UK, these CRS 

observations provide an appropriate scale of measurement of near-surface SM for comparison 

with such hydro-meteorological models. Similarly, there is good correlation between the 

ASCAT and CRS SM data, showing the value of the COSMOS-UK network in ground-

truthing satellite remote-sensing SM products. Some specific issues related to satellite SM 

retrieval could be revealed by these comparisons, for example the influence of denser/taller 

vegetation in mid-summer at CHIMN versus SHEEP. Sampling these different land 

management practices by the future deployment of more COSMOS-UK stations would 

provide a wealth of detailed information as to the performance of satellite SM retrievals 

under specific land surface conditions, as well as fundamental information on SM variability 

and underlying controlling processes across the UK. However, there is still a scale mismatch 

between the 12.5 km grid of the ASCAT data, as well as between the measurement depths, so 

great care must be taken in interpreting these comparisons.  
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Work by Franz et al. (2015) shows how static CRS measurements may be combined with a 

cosmic-ray rover, to produce high-resolution (1 km) SM maps. Spatial surveys over large 

areas (e.g. 12 x 12 km or more) are used to fit regressions between the infrequently rover-

surveyed points and the temporally continuous but spatially static CRS measurements. The 

combination gives 8-hourly SM maps over the calibrated grid. Such techniques are likely to 

become even more cost-effective when rovers are deployed on autonomous robotic farm 

vehicles, which can enable much longer or continuous field survey periods with little labour 

cost. Subject to vehicle power charging and instrument security, these robotic vehicles could 

travel over hundreds of kilometres per day, every day, greatly increasing spatiotemporal 

resolution for SM mapping. 

 Future COSMOS-UK stations should be located on land cover and soil types 

representative of the surrounding local (≈5 km) area. Nevertheless, as new higher spatial 

resolution satellite SM products become available, these ground-truth comparisons will be 

spatially better matched. It is planned that some satellite SM products may even be at a finer 

resolution the CRS SM measurement. In these cases the planned TVS will be of great value 

internationally for comparison with new very high spatial resolution SM products. 

The potential to measure snow accumulation has been recognised, and this will further 

develop with the deployment of the ‘Snow Fox’ buried CRS capsules at more 

northerly/higher altitude UK sites where significant snow accumulations are expected. It 

should also be noted that the soil moisture time series may need adjustment for the effect of 

lying snow. 

It is planned to develop a COSMOS-UK network over the coming years (subject to 

funding) to sample more of the UK, with the goal of providing sufficiently dense coverage to 

generate a gridded UK SM map at fine spatial resolution (1 km
2
) using interpolation and 

incorporation of satellite SM products. This will be a truly major advance in UK hydro-
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meteorological science, which will impact water resources management, flood forecasting, 

weather and climate modelling, farming, greenhouse-gas modelling and many other practical 

applications. 
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Table 1 Characteristics of the four prototype stations, including soil organic carbon (SOC), 

lattice and bound water (τ) and bulk density (ρbd). The installation dates in parentheses give 

the date of initial CRS deployment at Chimney Meadows and Sheepdrove Organic Farm.  

 CHIMN SHEEP WADDN WYTH1 

Site Name Chimney 

Meadows 

Sheepdrove 

Organic Farm 

Waddesdon 

Manor 

Wytham Woods 

Latitude 51.71 51.53 51.84 51.78 

Longitude -1.48 -1.48 -0.95 -1.34 

Altitude [m] 66 183 90 124 

Soil type Deep clay to 

sandy loam 

Shallow 

chalky, silty 

loam with 

flints 

Deep clay to loam Intermediate 

depth loam to 

clay 

Geology Alluvium over 

Kellaways 

Formation and 

Oxford Clay 

Formation 

(Undifferentiated)  

White Chalk 

Subgroup 

West Walton 

Formation, 

Ampthill Clay 

Formation and 

Kimmeridge Clay 

Formation 

(Undifferentiated)  

Kellaways 

Formation and 

Oxford Clay 

Formation 

(Undifferentiated)  

SOC [g g-1] 0.027 0.059 0.034 0.028 

ρbd [g cm-3] 1.30 1.03 0.98 0.95 

τ [g g-1] 0.050 0.031 0.021 0.017 

Land cover Grassland Grassland Grassland Deciduous 

woodland 

Date of 

installation 

03 Oct 2013 

(04 Aug 2011) 

24 Oct 2013 

(26 Nov 

2011) 

04 Nov 2013 22 Nov 2013 
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Figure 1 Locations of the four prototype COSMOS-UK stations at Chimney Meadows 

(CHIMN), Sheepdrove Organic Farm (SHEEP), Waddesdon Manor (WADDN) and Wytham 

Woods (WYTH1).  
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Figure 2 Diagram of the sensor layout for the prototype COSMOS-UK stations and 

photograph of the Sheepdrove Organic Farm site. 
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Figure 3 Raw neutron counts (Nraw) and the correction factors applied (Fp, FQ, FC, black 

lines) to obtain corrected counts (Ncorr) for CHIMN. Relevant variables (p, Q, C) are also 

shown in each case (green lines, right-hand axes). The temporal resolution of the data is 60 

min. 
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Figure 4 Daily averages (lines) and 6-h running means (shading) of (a) CRS soil moisture 

and (b) effective measurement depth for the two long-running COSMOS sites in the UK, 

CHIMN and SHEEP. In (a) daily rainfall from Wallingford, Oxfordshire is also shown (bars, 

right-hand axis). 
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Figure 5 Monthly rainfall for the study period (blue) compared to 1980-2010 normal rainfall 

(grey) at Wallingford, Oxfordshire. Sunshine hours (daily) are indicated by the bars at the top 

(right-hand axis). 
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Figure 6 Comparison of soil moisture indices from CRS probes and ASCAT data for 

Chimney Meadows and Sheepdrove Organic Farm (August 2011-December 2013). The 

resolution of the data is daily. Dashed lines are 1:1; solid lines are linear regressions through 

the data. 
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Figure 7 Comparison of volumetric soil moisture from CRS probes and the JULES model for 

Chimney Meadows and Sheepdrove Organic Farm (August 2011-December 2012). The 

resolution of the data is daily. Dashed lines are 1:1; solid lines are linear regressions through 

the data. 
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Figure 8 Daily averages (coloured lines) and 6-h running means (shading) of CRS soil 

moisture and daily rainfall (bars, right-hand axes) for the first four COSMOS-UK sites. Grey 

shading indicates missing rainfall data. 
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