Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 23, 2017, No. 3, 123–132

Non-split domination subdivision critical graphs

Girish V. R. 1 and P. Usha 2

¹ Department of Mathematics, Siddaganga Institute of Technology B. H. Road, Tumkur, Karnataka, India e-mail: giridsi63@gmail.com

² Department of Mathematics, Siddaganga Institute of Technology B. H. Road, Tumkur, Karnataka, India e-mail: ushapmurthy@yahoo.co.in

Received: 30 November 2016

Accepted: 16 October 2017

Abstract: A set of vertices S is said to dominate the graph G if for each $v \notin S$, there is a vertex $u \in S$ with v adjacent to u. The minimum cardinality of any dominating set is called the domination number of G and is denoted by $\gamma(G)$. A dominating set D of a graph G = (V, E) is a non-split dominating set if the induced graph $\langle V - D \rangle$ is connected. The non-split domination number $\gamma_{ns}(G)$ is the minimum cardinality of a non-split domination set. The purpose of this paper is to initiate the investigation of those graphs which are critical in the following sense: A graph G is called vertex domination critical if $\gamma(G - v) < \gamma(G)$ for every vertex v in G. A graph G is called vertex non-split critical if $\gamma_{ns}(G - v) < \gamma_{ns}(G)$ for every vertex v in G. Thus, G is k- γ_{ns} -critical if $\gamma_{ns}(G) = k$, for each vertex $v \in V(G)$, $\gamma_{ns}(G - v) < k$. A graph G is called edge domination critical if $\gamma(G + e) < \gamma(G)$ for every edge e in \overline{G} . A graph G is called edge non-split critical if $\gamma_{ns}(G + e) < \gamma(G)$ for every edge $e \in \overline{G}$. Thus, G is k- $\gamma_{ns}(G + e) < \gamma_{ns}(G)$ for every edge $e \in \overline{G}$. Thus, G is k- $\gamma_{ns}(G + e) < k$. First we have constructed a bound for a non-split domination number of a subdivision graph S(G) of some particular classes of graph in terms of vertices and edges of a graph G. Then we discuss whether these particular classes of subdivision graph S(G) are γ_{ns} -critical or not with respect to vertex removal and edge addition.

Keywords: Domination number, Non-split domination, Non-split domination number, Critical graph, Subdivision graph, Vertex critical, Edge critical.

AMS Classification: 05C69.

1 Introduction

In this paper all our graphs will be finite, connected, undirected and without loops or multiple edges such that G - v should not a null graph for vertex removal. Terminology not defined here will conform to that in [2]. Let $P_n, C_n, K_{1,n}, K_n, K_{m,n}$ denote the *path, cycle, star, complete and bipartite graph*.

An *end vertex* in a graph G is a vertex of *deg 1* and *support vertex* is a vertex which is adjacent to an *end vertex*.

A subdivision of an edge e = uv of a graph G is the replacement of an edge e by a path (u, v, w) where $w \notin V(G)$. The graph obtained from G by subdividing each edge of G exactly once is called the subdivision graph of G and it is denoted by S(G). The neighborhood of a vertex in the graph G is the set of vertices adjacent to v. The neighborhood is denoted by N(v).

A set of vertices S is said to *dominate* the graph G if for each $v \notin S$, there is a vertex $u \in S$ with v adjacent to u. The minimum cardinality of any *dominating set* is called the *domination* number of G and is denoted by $\gamma(G)$.

The concept of non-split domination has been studied by V. R. Kulli and B. Janakiram [3]. A dominating set D of a graph G = (V, E) is a non-split dominating set if the induced graph $\langle V - D \rangle$ is connected. The non-split domination number $\gamma_{ns}(G)$ is the minimum cardinality of a non-split domination set. The concept of γ -critical graphs has been studied by Sumner and Blitch [1] and Sumner [6].

In this paper, we study the *non-split domination critical* graphs. A graph G is called *vertex non-split critical* if $\gamma_{ns}(G - v) < \gamma_{ns}(G)$ for every vertex v in G. Thus, G is $k - \gamma_{ns}$ -critical if $\gamma_{ns}(G) = k$, for each vertex $v \in V(G)$, $\gamma_{ns}(G - v) < k$. A graph G is called *edge domination critical* if $\gamma(G + e) < \gamma(G)$ for every edge $e \in \overline{G}$. A graph G is called *edge non-split critical* if $\gamma_{ns}(G + e) < \gamma_{ns}(G)$ for every edge $e \in \overline{G}$. Thus, G is $k - \gamma_{ns}$ -critical if $\gamma_{ns}(G) = k$, for each edge $e \in \overline{G}$, $\gamma_{ns}(G + e) < k$.

First we have obtained a γ_{ns} set for some particular classes of subdivision graph S(G) in terms of vertices and edges of a graph G. Then we have discuss whether these particular classes of subdivision graph S(G) are γ_{ns} critical or not with respect to vertex removal and edge addition.

2 Construction of γ_{ns} set for a particular classes of graph

2.1 Construction of γ_{ns} set of a subdivision of a complete graph $S(K_n)$

- STEP 1: To cover all the vertices that subdivides $E(K_n)$, we require minimum n-1 vertices of K_n which will not cover n^{th} vertex of K_n .
- STEP 2: Removal of these n 1 vertices from $S(K_n)$ makes the graph $S(K_n)$ disconnected in which $\frac{(n-1)(n-2)}{2}$ components are K_1 and another component $K_{1,n-1}$. Therefore in γ_{ns} set contains $\frac{(n-1)(n-2)}{2}$ vertices from each of $\frac{(n-1)(n-2)}{2}$ components of K_1 .

STEP 3: Now to cover $K_{1,n-1}$ vertex, we need a vertex of $(V(S(K_n)) - V(K_n)) \cap V(K_{1,n-1})$.

Therefore,
$$\gamma_{ns}(S(K_n)) = (n-1) + \frac{(n-1)(n-2)}{2} + 1.$$

= $(n-1)(1 + \frac{n-2}{2}) + 1.$
= $(n-1)(\frac{2+n-2}{2}) + 1.$
= $\frac{(n)(n-1)}{2} + 1.$

2.2 Construction of γ_{ns} set of a subdivision of a bipartite graph $S(K_{m,n}), m \ge n$

- STEP 1: To cover all the vertices that subdivides $E(K_{m,n})$, we require *m* number of vertices of $K_{m,n}$.
- STEP 2: Removal of these *m* vertices from $S(K_{m,n})$ makes the graph $S(K_{m,n})$ disconnected into *n* number of components of $K_{1,m}$ say $G_1, G_2, G_3, \ldots, G_n$.
- STEP 3: Therefore γ_{ns} set contains $V(G_1) \cup V(G_2) \cup V(G_3) \cup \cdots \cup V(G_{n-1})$.
- STEP 4: Now to cover n^{th} component $K_{1,m}$, we need one vertex of $V(G_n)$ such that $K_{1,m}$ is connected.

Therefore,
$$\gamma_{ns}(S(K_{m,n})) = m + (m+1)(n-1) + 1.$$

= $m + mn - m + n - 1 + 1.$
= $n(1+m).$

2.3 Construction of γ_{ns} set of a subdivision of a wheel graph $S(W_n)$

- STEP 1: To cover all the vertices that subdivides $E(W_{m,n})$, we require minimum of n-1 vertices of W_n not containing the vertex of degree n-1.
- STEP 2: Removal of these n 1 vertices from $S(W_n)$ makes the graph $S(W_n)$ disconnected in which n 1 components are of K_1 and one component of $K_{1,n-1}$.

STEP 3: Therefore in γ_{ns} set contains n-1 vertices of K_1 .

STEP 4: Now to cover $K_{1,n-1}$, we need one vertex of $(V(S(K_n)) - V(K_n)) \cap V(K_{1,n-1})$.

Therefore, $\gamma_{ns}(S(W_n)) = (n-1) + (n-1) + 1.$ = 2(n-1) + 1.= 2n - 1.

3 Non-split vertex domination of a subdivision critical graph

Theorem 3.1. The graph $S(K_n)$ is non-split vertex critical $n \ge 3$.

Proof. Let D be the γ_{ns} set of $S(K_n)$ and let $|V(S(K_n)| = \frac{(n)(n-1)}{2} + n$. Let $A = V(S(K_n)) - V(K_n)$ and $B = \{v_r/v_r \in V(S(K_n)) - D\}$. we consider the following cases:

Case 1: Let $v \in V(K_n)$ and $v \notin N(B)$, then $\gamma_{ns}(S(K_n) - v) = |D| - |v| = \gamma_{ns}(S(K_n)) - 1$. Otherwise $v \in N(B)$ then, $\gamma_{ns}(S(K_n) - v) = |V(S(K_n))| - |v_j| - |K| + |v_s| - |v|$, where $v_j \in V(K_n), v_j \neq v, K = \{v_m \in A/v_m \in N(v_j)\}$ with |K| = n - 1 and $v_s \in K \cap N(v)$. $= (\frac{(n)(n-1)}{2} + n) - 1 - (n-1) + 1 - 1$. $= \frac{(n)(n-1)}{2} + 1 + (n-1) - (n-1) - 1$. $= \gamma_{ns}(S(K_n)) - 1$.

Case 2: Let $v \in A$ and $v \notin N(B)$ then, $\gamma_{ns}(S(K_n) - v) = |D| - |v|$. $= \left(\frac{(n)(n-1)}{2} + 1\right) - 1.$ $= \gamma_{ns}(S(K_n)) - 1.$

Otherwise $v \in N(B)$ then,

$$\begin{split} \gamma_{ns}(S(K_n) - v) &= |V(S(K_n))| - |v_j| - |K| + |v_s| - |v|, \text{ where } v_j \in V(K_n), v_j \neq N(v), K = \\ \{v_m \in A / v_m \in N(v_j)\} \text{ with } |K| = n - 1 \text{ and } v_s \in K. \end{split}$$

$$=\left(\frac{(n)(n-1)}{2}+n\right)-1-(n-1)+1-1.$$
$$=\frac{(n)(n-1)}{2}+1+(n-1)-(n-1)-1.$$
$$=\gamma_{ns}(S(K_n))-1.$$

From Case(1) and Case(2), we have $\gamma_{ns}(S(K_n) - v) < \gamma_{ns}(S(K_n))$, therefore $S(K_n)$ is vertex non-split critical $n \ge 3$.

Lemma 3.2. The graph $S(C_n)$ is non-split vertex critical for $n \ge 3$.

Lemma 3.3. The graph $S(P_n)$ is not non-split vertex critical for $n \ge 5$ and not nonsplit vertex critical for n < 5.

Lemma 3.4. The graph $S(T), T \neq P_n$ is not a non-split vertex critical for $n \geq 3$.

Theorem 3.5. The graph $S(K_{m,n})$ is non-split vertex critical for $m \ge n, m, n \ge 2$.

Proof. Let $V(K_{m,n}) = V_1 \cup V_2$ where $|V_1| = m$, $|V_2| = n$. Let D be the γ_{ns} set of $S(K_{m,n})$, $A = V(S(K_{m,n})) - V(K_{m,n})$ and $B = \langle V(S(K_{m,n}) - D) \rangle$. We consider the following cases.

Case 1: Let $v \in V_2$ and if $v \in N(B)$, then $\gamma_{ns}(S(K_{m,n}) - v) = |D| - |v|$. = $\gamma_{ns}(S(K_{m,n})) - 1$.

Otherwise $v \notin N(B)$ then, $\gamma_{ns}(S(K_{m,n}) - v) = |V(S(K_{m,n})| - |v_j| - |K| + |v_r| - |v|$, where $v_j \in V_1, K = \{v_p \in A/v_p \in N(v_j)\}$ with $|K| = m, v_r \in K \cup N(v)$.

$$=m + n + mn - 1 - m + 1 - 1.$$
$$=n(1 + m) - 1.$$
$$=\gamma_{ns}(S(K_{m,n})) - 1.$$

Case 2: Let $v \in V_1 \cap D$ then, $\gamma_{ns}(S(K_{m,n}) - v) = |D| - |v|$.

$$= \gamma_{ns}(S(K_{m,n})) - 1.$$

Otherwise $v \in V_1, v \notin D$ then,

 $\begin{aligned} \gamma_{ns}(S(K_{m,n}) - v) &= |V(S(K_{m,n}))| - |v_j| - |K| + |v_r| - |v|, \text{ where } v_j \neq v, v_j \in V_1, K = \\ \{v_p \in A/v_p \in N(v_j)\} \text{ with } |K| = m, v_r \in K. \end{aligned}$

$$=m + n + mn - 1 - m + 1 - 1$$
$$=n(1 + m) - 1.$$
$$=\gamma_{ns}(S(K_{m,n})) - 1.$$

Case 3: Let $v \in A$ and $v \notin N(B)$ then, $\gamma_{ns}(S(K_{m,n}) - v) = |D| - |v|$. = $\gamma_{ns}(S(K_{m,n})) - 1$.

Otherwise $v \in N(B)$ then,

$$\begin{split} \gamma_{ns}(S(K_{m,n}) - v) &= |V(S(K_{m,n}))| - |v_j| - |K| + |v_r| - |v|, \text{ where } v_j \notin N(v), v_j \in V_1, K = \{v_p \in A / v_p \in N(v_j)\} \text{ with } |K| = m, v_r \in K. \end{split}$$

$$=m + n + mn - 1 - m + 1 - 1.$$
$$=n(1 + m) - 1.$$
$$=\gamma_{ns}(S(K_{m,n})) - 1.$$

From all the above cases, we have $\gamma_{ns}(S(K_{m,n}) - v) < \gamma_{ns}(S(K_{m,n}))$, therefore $S(K_{m,n})$ is vertex non-split critical.

Theorem 3.6. The graph $S(W_n)$ in not vertex non-split critical for $n \ge 5$ and vertex non-split critical for n = 4.

Proof. Let D be the γ_{ns} set of $S(W_n)$ and $|V(S(W_n))| = 3n - 2$. Let $v_k \in V(W_n)$, $deg(v_k) = n-1$. Let $B = \{v_i/v_i \in V(S(W_n)) - v_k\}$ and $C = V(S(W_n)) - V(W_n)$ and $F = \langle V(S(K_n)) - D \rangle$. we consider the following cases:

Case 1: Let $v \in B \cap D$ and $v \notin N(F)$ then $\gamma_{ns}(S(W_n) - v) = |D| - |v|$.

 $=\gamma_{ns}(S(W_n)) - 1.$ Otherwise $v \in N(F)$ and $n \ge 5$ then, $\gamma_{ns}(S(W_n) - v) = |D| - |v| + |v_r| - |v_s|$. Where $v_s \in N(v_k) \cap D$ and covers $v_k, v_r \in N(v) \cap N(v_k)$.

 $=\gamma_{ns}(S(W_n))-1.$ Otherwise for n = 4, $\gamma_{ns}(S(W_n) - v) = |D| - |v| + |v_r| - |v_s|$. Where $v_s \in N(F) \cap C$, $v_r \in N(v) \cap F$.

$$=\gamma_{ns}(S(W_n)) - 1$$

For $n = 4, v \in B, v \notin D$ then, $\gamma_{ns}(S(W_4) - v) = |V(S(W_4))| - |v| - |v_j| - |K| + |v_s|$. Where $v_j \in \{B\} - \{v\}, K = \{v_r/v_r \in N(v_j)\}$ with $|K| = 3, v_s \in K \cap N(v)$.

$$=3n - 2 - 1 - 1 - 3 + 1$$
$$=3n - 6.$$

Case 2: Let $v = v_k$ then, $\gamma_{ns}(S(W_n) - v) = |V(S(W_n))| - |v| - |v_j| - |K| + |v_m|$. Where $v_j \in B, K = \{v_l/v_l \in N(v_j)\}$ with $|K| = 3, v_m \in K \cap N(v_k)$.

$$=3n - 2 - 1 - 1 - 3 + 1.$$
$$=3n - 6.$$

Case 3: Let $v \in C$, $v \notin N(v_k)$ and if $v \notin N(F)$ then, $\gamma_{ns}(S(W_n) - v) = |D| - |v|$.

$$\gamma_{ns}(S(W_n)) - 1.$$

Otherwise $v \in N(F)$ and n = 4 then, $\gamma_{ns}(S(W_n) - v) = |V(S(W_n))| - |v| - |v_j| - |K| + |v_m|$. Where $v_j \in B, v_j \neq N(v), K = \{v_l/v_l \in N(v_j)\}$ with $|K| = 3, v_m \in K$.

$$= 3n - 2 - 1 - 1 - 3 + 1.$$

Otherwise $v \in N(v_k)$, then $\gamma_{ns}(S(W_n) - v) = |V(S(W_n))| - |v| - |v_j| - |K| + |v_m|$. Where $v_j \in B, v_j \notin N(v), K = \{v_l/v_l \in N(v_j)\}$ with $|K| = 3, v_m \in K$.

$$=3n - 2 - 1 - 1 - 3 + 1.$$

$$=3n-6.$$

=3n-6.

From Case 1, Case 2 and Case 3:

(i) If
$$n = 4$$
, $\gamma_{ns}(S(W_n) - v) = 3n - 6 < 2n - 1 = \gamma_{ns}(S(W_n))$.

(ii) If
$$n \ge 5$$
, $\gamma_{ns}(S(W_n) - v) = 3n - 6 \ge 2n - 1 = \gamma_{ns}(S(W_n))$.

Hence the proof.

4 Non-split edge domination of a subdivision critical graph

Theorem 4.1. The graph $S(K_n)$ is edge non-split critical for $n \ge 3$.

Proof. Let $C = V(S(K_n) - V(K_n))$. We consider the following cases.

Case 1: Let $e = v_1 v_2 \in E(\overline{S(K_n)}), \{v_1, v_2\} \in V(K_n)$ then, $\gamma_{ns}(S(K_n) + e) = |V(S(K_n))| - |v_1| - |K|$, where $K = \{v_s \in C/v_s \in N(v_1)\}$ with |K| = n - 1. $= \frac{(n)(n-1)}{2} + n - 1 - (n - 1)$.

$$=\frac{(n)(n-1)}{2} + 1 - 1.$$

= $\gamma_{ns}(S(K_n)) - 1.$

Case 2: Let $e = v_1 v_2 \in E(\overline{S(K_n)}), \{v_1, v_2\} \in C, \{v_1, v_2\} \in N(v_k), v_k \in V(K_n)$ then, $\gamma_{ns}(S(K_n) + e) = |V(S(K_n))| - |v_2| - |\{v_k, v_l\}| - |K| - |R| + |v_m|.$ Where $\{v_k, v_l\} \in V(K_n) \cap N(v_2), v_k \in N(v_1), K = \{v_s \in C/v_s \neq (v_2, v_1), v_s \in N(v_k)\}, R = \{v_r \in C/v_r \neq v_2, v_r \in N(v_l)\},$ with $|K| = n - 3, |R| = n - 2, v_m \in R.$ $= \frac{(n)(n-1)}{2} + n - 1 - 2 - (n - 3) - (n - 2) + 1.$

$$=\frac{(n)(n-1)}{2} - n + 3.$$

= $\gamma_{ns}(S(K_n)) - (n-2).$

Case 3: Let $e = v_1 v_2 \in E(\overline{S(K_n)}), v_1 \in V(K_n), v_2 \in C, \{v_1, v_2\} \notin N(v_k), v_k \in V(K_n)$ then, $\gamma_{ns}(S(K_n) + e) = |V(S(K_n))| - |v_2| - |\{v_k, v_l\}| - |K| - |R| + |\{v_m, v_n\}|.$ Where $\{v_k, v_l\} \in V(K_{m,n}) \cap N(v_2), K = \{v_s \in C/v_s \neq v_2, v_s \in N(v_k)\}, R = \{v_r \in C/v_r \neq v_2, v_r \in N(v_l)\},$ with $|K| = n - 2, |R| = n - 2, v_m \in K, v_n \in R.$ $= \frac{(n)(n-1)}{2} + n - 1 - 2 - (n - 2) - (n - 2) + 2.$ $= \frac{(n)(n-1)}{2} - n + 3.$ $= \gamma_{ns}(S(K_n)) - (n - 2).$

The result follows from Case(1), Case(2) and Case(3).

Lemma 4.2. The graph $S(C_n)$ is non-split edge critical for $n \ge 3$.

Lemma 4.3. The graph $S(P_n)$ is not non-split edge critical for $n \ge 3$.

Lemma 4.4. The graph S(T) is not non-split edge critical, if $T \neq K_{1.n}$.

Theorem 4.5. The graph $S(K_{m,n})$ is not edge critical for m > n and edge critical for m = n where $m, n \ge 2$.

Proof. Let $V(K_{m,n}) = V_1 \cup V_2$ where $|V_1| = m$, $|V_2| = n$. Let D be the γ_{ns} set of the graph $S(K_{m,n})$ and $C = V(S(K_{m,n})) - V(K_{m,n})$. We consider the following cases:

Case 1: Let
$$e = v_1 v_2 \in E(\overline{S(K_{m,n})}), v_1 \in D, v_2 \notin D$$
 then,
 $\gamma_{ns}(S(K_{m,n}) + e) = |D| - |v_r|, v_r \in N(v_2) \cap D.$
 $= \gamma_{ns}(S(K_{m,n})) - 1.$

Case 2: Let $e = v_1 v_2 \in E(\overline{S(K_{m,n})}), \{v_1, v_2\} \in V_2 \text{ or } v_1 \in C, v_2 \in V_2 \text{ and suppose } m > n \text{ then,}$ $\gamma_{ns}(S(K_{m,n}) + e) = |V(S(K_{m,n}))| - |v_j| - |K| + |v_m|, v_j \in V_1, K = \{v_s \in C/v_s \in N(v_j)\},$ with $|K| = m, v_m \in K.$

=
$$mn + m + n - 1 - m + 1$$
.
= $n(m + 1)$.
= $\gamma_{ns}(S(K_{m,n}))$.

Suppose m = n then,

$$\begin{aligned} \gamma_{ns}(S(K_{m,n}) + e) &= |V(S(K_{m,n}))| - |v_2| - |K|, K = \{v_s \in C/v_s \in N(v_2)\} \text{ with } |K| = n. \\ &= mn + m + n - 1 - n. \\ &= mn + m + n - 1 - m(\text{since } m = n). \\ &= n(m+1) - 1. \\ &= \gamma_{ns}(S(K_{m,n})) - 1. \end{aligned}$$

Case 3: Let
$$e = v_1 v_2 \in E(\overline{S(K_{m,n})}), \{v_1, v_2\} \in V_1$$
 then,
 $\gamma_{ns}(S(K_{m,n}) + e) = |V(S(K_{m,n}))| - |v_1| - |K|, K = \{v_s \in C/v_s \in N(v_1)\}$ with $|K| = m$.
 $= mn + m + n - 1 - m$.
 $= n(m + 1) - 1$.
 $= \gamma_{ns}(S(K_{m,n})) - 1$.
Case 4: Let $e = v_1 v_2 \in E(\overline{S(K_{m,n})})$ $v_1 \in V_2$ $v_2 \in V_1$ or $v_1 \in C$ $v_2 \in V_1$ then

$$\begin{aligned} \gamma_{ns}(S(K_{m,n}) + e) &= |V(S(K_{m,n}))| - |v_2| - |K|, K = \{v_s \in C/v_s \in N(v_2)\} \text{ with } |K| = m. \\ &= mn + m + n - 1 - m. \\ &= n(m+1) - 1. \\ &= \gamma_{ns}(S(K_{m,n})) - 1. \end{aligned}$$

Case 5: Let
$$e = v_1 v_2 \in E(\overline{S(K_{m,n})}), \{v_1, v_2\} \in C$$
 and $\{v_1, v_2\} \in N(v_r), v_r \in V_1$ then,
 $\gamma_{ns}(S(K_{m,n})+e) = |V(S(K_{m,n}))| - |v_r| - |K| + |v_1| - |v_m|, K = \{v_s \in C/v_s \in N(v_r)\}, v_m \in N(v_2) \cap V_2$ with $|K| = m$.

$$= mn + m + n - 1 - m + 1 - 1.$$

= $n(m + 1) - 1.$
= $\gamma_{ns}(S(K_{m,n})) - 1.$

Otherwise $v_1 \in N(v_r), v_2 \in N(v_s), v_r \neq v_s, (v_r, v_s) \in V_1$ then, $\gamma_{ns}(S(K_{m,n})+e) = |V(S(K_{m,n}))| - |v_r| - |K| - |v_m| + |v_s|, K = \{v_s \in C/v_s \in N(v_r)\}, v_m \in N(v_1) \cap V_2, v_s \in K \neq v_1$ with |K| = m.

$$= mn + m + n - 1 - m - 1 + 1.$$

= $n(m + 1) - 1.$
= $\gamma_{ns}(S(K_{m,n})) - 1.$

The result follows from the above cases.

Theorem 4.6. The graph $S(W_n)$ in not edge non-split critical for $n \ge 5$ and edge non-split critical for n = 4.

Proof. Let $|V(S(W_n))| = 3n - 2$ and $B = \{v_i/v_i \in V(W_n) - v_k\}$, where v_k is the vertex of degree n - 1 and $C = V(S(W_n)) - V(W_n)$. We consider the following cases:

Case 1: Let $e = v_1 v_k \in E(\overline{S(W_n)}), v_1 \in B \cup C$ then, $\gamma_{ns}(S(W_n) + e) = |V(S(W_n))| - |v_k| - |K|$ with |K| = n - 1 = 3n - 2 - 1 - (n - 1) = 2n - 2.Since 2n - 2 < 2n - 1. Therefore $\gamma_{ns}(S(W_n) - v) < \gamma_{ns}(S(W_n)).$

Case 2: Let $e = v_1 v_2 \in E(\overline{S(W_n)}), v_1 \in B \cup C, v_2 \in C, \{v_1, v_2\} \notin N(v_k)$ then, $\gamma_{ns}(S(W_n) + e) = |V(S(W_n)) - |v_2| - |\{v_i, v_j\}| - |\{v_r, v_s\}|.$ Where $\{v_i, v_j\} \in N(v_2) \cap B, (v_r, v_s) \in N(v_k) \cap N(v_i, v_j).$

$$=3n - 2 - 1 - 2 - 2.$$

 $=3n - 7.$

- (i) If n = 4, 5 then 3n 7 < 2n 1, therefore $\gamma_{ns}(S(W_n) + e) < \gamma_{ns}(S(W_n))$.
- (ii) If $n \ge 6$ then $3n 7 \ge 2n 1$, therefore $\gamma_{ns}(S(W_n) + e) \ge \gamma_{ns}(S(W_n))$.

Case 3: Let $e = v_1 v_2 \in E(\overline{S(W_n)}), \{v_1, v_2\} \in B$ and $n \ge 5$ then, $\gamma_{ns}(S(W_n) + e) = |V(S(W_n))| - |v_k| - |K| + |v_m|$. Where $K = \{v_s \in C/v_s \in N(v_k)\}, v_m \in K$ with |K| = n - 1. = 3n - 2 - 1 - (n - 1) + 1. = 2n - 1.

$$=\gamma_{ns}(S(W_n)).$$

Otherwise for n = 4 then, $\gamma_{ns}(S(W_n) + e) = |V(S(W_n))| - |v_1| - |K|$. Where $K = \{v_m \in C/v_m \in N(v_1)\}$.

$$=3n - 2 - 1 - (n - 1).$$

$$=3n-6$$

Since 3n - 6 < 2n - 1 for n = 4, therefore $\gamma_{ns}(S(W_n) + e) < \gamma_{ns}(S(W_n))$.

Case 4: Let $e = v_1 v_2 \in E(\overline{S(W_n)}), \{v_1, v_2\} \in B \cup C, v_1 \notin N(v_k), v_2 \in N(v_k)$ then, $\gamma_{ns}(S(W_n) + e) = |V(S(W_n))| - |v_k| - |K| - |v_r| - |v_s| + |v_m|$, Where $K = \{v_p \in C/v_p \in N(v_k) \cap C\}, v_r \in B \cap N(v_2), v_s \in N(v_r) \cap C, v_s \neq (v_1, v_2), v_m \neq v_2, v_m \in K \text{ with } |K| = n - 1.$

$$=3n - 2 - 1 - (n - 1) - 1 - 1 + 1.$$

=
$$2n - 3$$
. Otherwise $v_1 \in C \cap N(v_k)$ then,
 $\gamma_{ns}(S(W_n) + e) = |V(S(W_n))| - |v_k| - |K| - |v_r| - |v_s| + |v_1|$, Where $K = \{v_p \in C/v_p \in N(v_k) \cap C\}, v_r \in B \cap N(v_2), v_s \in N(v_r) \cap C, v_s \neq v_2 \text{ with } |K| = n - 1.$

$$=3n - 2 - 1 - (n - 1) - 1 - 1 + 1.$$

=2n-3.Since 2n-3 < 2n-1, therefore $\gamma_{ns}(S(W_n)-v) < \gamma_{ns}(S(W_n))$.

The result follows from the above cases.

References

- [1] Sumner, D. P. & Blitch, P. (1983) Domination critical graph, *Journal of combinatorial theory series B*, 34, 65–76.
- [2] Harary, F. (1969) Graph Theory, Addison-Wesley, Reading Mass.
- [3] Kulli, V. R., & Janakiram, B. (2000) The Non-split domination of the graph, *Indian J. Pure Appl.Math.*, 31, 545–550.

- [4] Lemanska, M. & Patyk, A. (2008) Weakly connected domination critical graphs, *Opuscula Mathematica*, 28(3), 325–330.
- [5] Brigham, R. C., Chinn, P. Z., & Dutton, R. D. (1988) Vertex domination critical graphs, *Networks*, 18(3), 173–179.
- [6] Sumner, D. P. (1990) Critical concepts in Domination, *Discrete Math.*, 86, 33–46.
- [7] Haynes, T. W., Hedetniemi, S. T., & Slater, P. J. (1998) *Fundamentals of Domination of graphs*, Marcel Dekker, Inc. New York.
- [8] Xue-Gang, Liang Sun, De-Xiang Ma. (2004) Connected Domination Critical graphs, *Applied Mathematics*, 17, 503–507.