Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 23, 2017, No. 3, 123–132

Non-split domination subdivision critical graphs

Girish V. \mathbb{R}^1 and P. Usha²

¹ Department of Mathematics, Siddaganga Institute of Technology B. H. Road, Tumkur, Karnataka, India e-mail: giridsi63@gmail.com

² Department of Mathematics, Siddaganga Institute of Technology B. H. Road, Tumkur, Karnataka, India e-mail: ushapmurthy@yahoo.co.in

Received: 30 November 2016 Accepted: 16 October 2017

Abstract: A set of vertices S is said to *dominate* the graph G if for each $v \notin S$, there is a vertex $u \in S$ with v adjacent to u. The minimum cardinality of any *dominating set* is called the *domination number* of G and is denoted by $\gamma(G)$. A *dominating set* D of a graph $G = (V, E)$ is a *non-split dominating set* if the induced graph $\langle V - D \rangle$ is connected. The *non-split domination number* $\gamma_{ns}(G)$ is the minimum cardinality of a *non-split domination set*. The purpose of this paper is to initiate the investigation of those graphs which are critical in the following sense: A graph G is called *vertex domination critical* if $\gamma(G - v) < \gamma(G)$ for every vertex v in G. A graph G is called *vertex non-split critical* if $\gamma_{ns}(G - v) < \gamma_{ns}(G)$ for every vertex v in G. Thus, G is k - γ_{ns} -critical if $\gamma_{ns}(G) = k$, for each vertex $v \in V(G)$, $\gamma_{ns}(G-v) < k$. A graph G is called *edge domination critical* if $\gamma(G + e) < \gamma(G)$ for every edge e in \overline{G} . A graph G is called *edge non-split critical* if $\gamma_{ns}(G+e) < \gamma_{ns}(G)$ for every edge $e \in \overline{G}$. Thus, G is k - γ_{ns} -*critical* if $\gamma_{ns}(G) = k$, for each edge $e \in \overline{G}$, $\gamma_{ns}(G + e) < k$. First we have constructed a bound for a non-split domination number of a subdivision graph $S(G)$ of some particular classes of graph in terms of vertices and edges of a graph G . Then we discuss whether these particular classes of subdivision graph $S(G)$ are γ_{ns} -critical or not with respect to vertex removal and edge addition.

Keywords: Domination number, Non-split domination, Non-split domination number, Critical graph, Subdivision graph, Vertex critical, Edge critical.

AMS Classification: 05C69.

1 Introduction

In this paper all our graphs will be finite, connected , undirected and without loops or multiple edges such that $G - v$ should not a null graph for vertex removal. Terminology not defined here will conform to that in [2]. Let $P_n, C_n, K_{1,n}, K_n, K_{m,n}$ denote the *path, cycle, star, complete and bipartite graph*.

An *end vertex* in a graph G is a vertex of *deg 1* and *support vertex* is a vertex which is adjacent to an *end vertex*.

A *subdivision* of an edge $e = uv$ of a graph G is the replacement of an edge e by a path (u, v, w) where $w \notin V(G)$. The graph obtained from G by subdividing each edge of G exactly once is called the *subdivision graph* of G and it is denoted by S(G). The neighborhood of a vertex in the graph G is the set of vertices adjacent to v. The neighborhood is denoted by $N(v)$.

A set of vertices S is said to *dominate* the graph G if for each $v \notin S$, there is a vertex $u \in S$ with v adjacent to u. The minimum cardinality of any *dominating set* is called the *domination number* of G and is denoted by $\gamma(G)$.

The concept of non-split domination has been studied by V. R. Kulli and B. Janakiram [3]. A *dominating set* D of a graph $G = (V, E)$ is a *non-split dominating set* if the induced graph $\langle V - D \rangle$ is *connected*. The *non-split domination number* $\gamma_{ns}(G)$ is the minimum cardinality of a *non-split domination set*. The concept of γ*-critical* graphs has been studied by Sumner and Blitch [1] and Sumner [6].

In this paper, we study the *non-split domination critical* graphs. A graph G is called *vertex non-split critical* if $\gamma_{ns}(G - v) < \gamma_{ns}(G)$ for every vertex v in G. Thus, G is k- γ_{ns} -critical if $\gamma_{ns}(G) = k$, for each vertex $v \in V(G)$, $\gamma_{ns}(G - v) < k$. A graph G is called *edge domination critical* if $\gamma(G + e) < \gamma(G)$ for every edge $e \in \overline{G}$. A graph G is called *edge non-split critical* if $\gamma_{ns}(G+e) < \gamma_{ns}(G)$ for every edge $e \in \overline{G}$. Thus, G is $k \gamma_{ns}$ -critical if $\gamma_{ns}(G) = k$, for each edge $e \in \overline{G}$, $\gamma_{ns}(G+e) < k$.

First we have obtained a γ_{ns} set for some particular classes of subdivision graph $S(G)$ in terms of vertices and edges of a graph G. Then we have discuss whether these particular classes of subdivision graph $S(G)$ are γ_{ns} critical or not with respect to vertex removal and edge addition.

2 Construction of γ_{ns} set for a particular classes of graph

2.1 Construction of γ_{ns} set of a subdivision of a complete graph $S(K_n)$

- STEP 1: To cover all the vertices that subdivides $E(K_n)$, we require minimum $n-1$ vertices of K_n which will not cover n^{th} vertex of K_n .
- STEP 2: Removal of these $n-1$ vertices from $S(K_n)$ makes the graph $S(K_n)$ disconnected in which $\frac{(n-1)(n-2)}{2}$ components are K_1 and another component $K_{1,n-1}$. Therefore in γ_{ns} set contains $\frac{(n-1)(n-2)}{2}$ vertices from each of $\frac{(n-1)(n-2)}{2}$ components of K_1 .

STEP 3: Now to cover $K_{1,n-1}$ vertex, we need a vertex of $(V(S(K_n)) - V(K_n)) \cap V(K_{1,n-1})$.

Therefore,
$$
\gamma_{ns}(S(K_n)) = (n-1) + \frac{(n-1)(n-2)}{2} + 1
$$
.
= $(n-1)(1 + \frac{n-2}{2}) + 1$.
= $(n-1)(\frac{2+n-2}{2}) + 1$.
= $\frac{(n)(n-1)}{2} + 1$.

2.2 Construction of γ_{ns} set of a subdivision of a bipartite graph $S(K_{m,n}), m \geq n$

- STEP 1: To cover all the vertices that subdivides $E(K_{m,n})$, we require m number of vertices of $K_{m,n}$.
- STEP 2: Removal of these m vertices from $S(K_{m,n})$ makes the graph $S(K_{m,n})$ disconnected into *n* number of components of $K_{1,m}$ say $G_1, G_2, G_3, \ldots, G_n$.
- STEP 3: Therefore γ_{ns} set contains $V(G_1) \cup V(G_2) \cup V(G_3) \cup \cdots \cup V(G_{n-1})$.
- STEP 4: Now to cover n^{th} component $K_{1,m}$, we need one vertex of $V(G_n)$ such that $K_{1,m}$ is connected.

Therefore,
$$
\gamma_{ns}(S(K_{m,n})) = m + (m+1)(n-1) + 1
$$
.
= $m + mn - m + n - 1 + 1$.
= $n(1 + m)$.

2.3 Construction of γ_{ns} set of a subdivision of a wheel graph $S(W_n)$

- STEP 1: To cover all the vertices that subdivides $E(W_{m,n})$, we require minimum of $n-1$ vertices of W_n not containing the vertex of degree $n-1$.
- STEP 2: Removal of these $n-1$ vertices from $S(W_n)$ makes the graph $S(W_n)$ disconnected in which $n - 1$ components are of K_1 and one component of $K_{1,n-1}$.

STEP 3: Therefore in γ_{ns} set contains $n-1$ vertices of K_1 .

STEP 4: Now to cover $K_{1,n-1}$, we need one vertex of $(V(S(K_n)) - V(K_n)) \cap V(K_{1,n-1})$.

Therefore, $\gamma_{ns}(S(W_n)) = (n-1) + (n-1) + 1$. $= 2(n - 1) + 1.$ $= 2n - 1.$

3 Non-split vertex domination of a subdivision critical graph

Theorem 3.1. *The graph* $S(K_n)$ *is non-split vertex critical* $n \geq 3$ *.*

Proof. Let D be the γ_{ns} set of $S(K_n)$ and let $|V(S(K_n)| = \frac{(n)(n-1)}{2} + n$. Let $A = V(S(K_n)) V(K_n)$ and $B = \{v_r/v_r \in V(S(K_n)) - D\}$. we consider the following cases:

Case 1: Let $v \in V(K_n)$ and $v \notin N(B)$, then $\gamma_{ns}(S(K_n) - v) = |D| - |v| = \gamma_{ns}(S(K_n)) - 1$. Otherwise $v \in N(B)$ then, $\gamma_{ns}(S(K_n) - v) = |V(S(K_n))| - |v_j| - |K| + |v_s| - |v|$, where $v_j \in V(K_n), v_j \neq v, K =$ $\{v_m \in A/v_m \in N(v_j)\}\$ with $|K| = n - 1$ and $v_s \in K \cap N(v)$. $=(\frac{(n)(n-1)}{2}+n)-1-(n-1)+1-1.$ $=\frac{(n)(n-1)}{2}+1+(n-1)-(n-1)-1.$ $=\gamma_{ns}(S(K_n))-1.$

Case 2: Let $v \in A$ and $v \notin N(B)$ then, $\gamma_{ns}(S(K_n) - v) = |D| - |v|$.

$$
= \left(\frac{(n)(n-1)}{2} + 1\right) - 1.
$$

= $\gamma_{ns}(S(K_n)) - 1.$

Otherwise $v \in N(B)$ then,

 $\gamma_{ns}(S(K_n) - v) = |V(S(K_n))| - |v_j| - |K| + |v_s| - |v|$, where $v_j \in V(K_n), v_j \neq N(v), K =$ ${v_m \in A/v_m \in N(v_i)}$ with $|K| = n - 1$ and $v_s \in K$.

$$
= \left(\frac{(n)(n-1)}{2} + n\right) - 1 - (n-1) + 1 - 1.
$$

=
$$
\frac{(n)(n-1)}{2} + 1 + (n-1) - (n-1) - 1.
$$

=
$$
\gamma_{ns}(S(K_n)) - 1.
$$

From Case(1) and Case(2), we have $\gamma_{ns}(S(K_n) - v) < \gamma_{ns}(S(K_n))$, therefore $S(K_n)$ is vertex non-split critical $n \geq 3$. \Box

Lemma 3.2. *The graph* $S(C_n)$ *is non-split vertex critical for* $n > 3$ *.*

Lemma 3.3. The graph $S(P_n)$ is not non-split vertex critical for $n \geq 5$ and not nonsplit vertex *critical for* $n < 5$ *.*

Lemma 3.4. *The graph* $S(T)$, $T \neq P_n$ *is not a non-split vertex critical for* $n \geq 3$ *.*

Theorem 3.5. *The graph* $S(K_{m,n})$ *is non-split vertex critical for* $m \ge n$ *,* $m, n \ge 2$ *.*

Proof. Let $V(K_{m,n}) = V_1 \cup V_2$ where $|V_1| = m$, $|V_2| = n$. Let D be the γ_{ns} set of $S(K_{m,n})$, $A =$ $V(S(K_{m,n})) - V(K_{m,n})$ and $B = \langle V(S(K_{m,n}) - D \rangle)$. We consider the following cases.

Case 1: Let $v \in V_2$ and if $v \in N(B)$, then $\gamma_{ns}(S(K_{m,n}) - v) = |D| - |v|$. $=\gamma_{ne}(S(K_{m,n}))-1.$

Otherwise $v \notin N(B)$ then, $\gamma_{ns}(S(K_{m,n})-v)=|V(S(K_{m,n})|-|v_j|-|K|+|v_r|-|v|,$ where $v_j\in V_1, K=\{v_p\in A/v_p\in V_2\}$ $N(v_i)$ with $|K| = m, v_r \in K \cup N(v)$.

$$
=m + n + mn - 1 - m + 1 - 1.
$$

=n(1 + m) - 1.
= $\gamma_{ns}(S(K_{m,n})) - 1.$

Case 2: Let $v \in V_1 \cap D$ then, $\gamma_{ns}(S(K_{m,n}) - v) = |D| - |v|$.

$$
=\gamma_{ns}(S(K_{m,n}))-1.
$$

Otherwise $v \in V_1, v \notin D$ then,

 $\gamma_{ns}(S(K_{m,n})-v) = |V(S(K_{m,n}))| - |v_j| - |K| + |v_r| - |v|$, where $v_j \neq v, v_j \in V_1, K =$ ${v_p \in A/v_p \in N(v_i)}$ with $|K| = m, v_r \in K$.

$$
= m + n + mn - 1 - m + 1 - 1.
$$

= $n(1 + m) - 1$.
= $\gamma_{ns}(S(K_{m,n})) - 1$.

Case 3: Let $v \in A$ and $v \notin N(B)$ then, $\gamma_{ns}(S(K_{m,n}) - v) = |D| - |v|$.

$$
=\gamma_{ns}(S(K_{m,n}))-1.
$$

Otherwise $v \in N(B)$ then,

 $\gamma_{ns}(S(K_{m,n})-v)=|V(S(K_{m,n}))|-|v_j|-|K|+|v_r|-|v|$, where $v_j \notin N(v), v_j \in V_1, K=$ ${v_p \in A/v_p \in N(v_i)}$ with $|K| = m, v_r \in K$.

$$
= m + n + mn - 1 - m + 1 - 1.
$$

= $n(1 + m) - 1$.
= $\gamma_{ns}(S(K_{m,n})) - 1$.

From all the above cases, we have $\gamma_{ns}(S(K_{m,n}) - v) < \gamma_{ns}(S(K_{m,n}))$, therefore $S(K_{m,n})$ is vertex non-split critical. \Box

Theorem 3.6. *The graph* $S(W_n)$ *in not vertex non-split critical for* $n \geq 5$ *and vertex non-split critical for* $n = 4$ *.*

Proof. Let D be the γ_{ns} set of $S(W_n)$ and $|V(S(W_n))| = 3n - 2$. Let $v_k \in V(W_n)$, $deg(v_k) =$ $n-1$. Let $B = \{v_i/v_i \in V(S(W_n)) - v_k\}$ and $C = V(S(W_n)) - V(W_n)$ and $F = \langle V(S(K_n)) - V(S(K_n)) - V(S(K_n))\rangle$ $D >$, we consider the following cases:

Case 1: Let $v \in B \cap D$ and $v \notin N(F)$ then $\gamma_{ns}(S(W_n) - v) = |D| - |v|$.

 $=\gamma_{ns}(S(W_n))-1.$ Otherwise $v \in N(F)$ and $n \ge 5$ then, $\gamma_{ns}(S(W_n) - v) = |D| - |v| + |v_r| - |v_s|$. Where $v_s \in N(v_k) \cap D$ and covers $v_k, v_r \in N(v) \cap N(v_k)$.

 $=\gamma_{ns}(S(W_n))-1.$ Otherwise for $n = 4$, $\gamma_{ns}(S(W_n) - v) = |D| - |v| + |v_r| - |v_s|$. Where $v_s \in N(F) \cap C$, $v_r \in N(v) \cap F$.

$$
=\gamma_{ns}(S(W_n))-1.
$$

For $n = 4$, $v \in B$, $v \notin D$ then, $\gamma_{ns}(S(W_4) - v) = |V(S(W_4))| - |v| - |v_j| - |K| + |v_s|$. Where $v_i \in \{B\} - \{v\}, K = \{v_r/v_r \in N(v_i)\}$ with $|K| = 3, v_s \in K \cap N(v)$.

$$
=3n-2-1-1-3+1.
$$

=3n-6.

Case 2: Let $v = v_k$ then, $\gamma_{ns}(S(W_n) - v) = |V(S(W_n))| - |v| - |v_j| - |K| + |v_m|$. Where $v_i \in B, K = \{v_l/v_l \in N(v_i)\}\$ with $|K| = 3, v_m \in K \cap N(v_k)$.

$$
=3n-2-1-1-3+1.
$$

=3n-6.

Case 3: Let $v \in C$, $v \notin N(v_k)$ and if $v \notin N(F)$ then, $\gamma_{ns}(S(W_n) - v) = |D| - |v|$.

$$
=\gamma_{ns}(S(W_n))-1.
$$

Otherwise $v \in N(F)$ and $n = 4$ then, $\gamma_{ns}(S(W_n) - v) = |V(S(W_n))| - |v| - |v_j| - |K| + |v_m|$. Where $v_j \in B, v_j \neq N(v), K =$ $\{v_l/v_l \in N(v_i)\}\$ with $|K| = 3, v_m \in K$.

$$
=3n-2-1-1-3+1.
$$

Otherwise $v \in N(v_k)$, then $\gamma_{ns}(S(W_n) - v) = |V(S(W_n))| - |v| - |v_j| - |K| + |v_m|$. Where $v_j \in B, v_j \notin N(v), K = \{v_l/v_l \in N(v_j)\}\$ with $|K| = 3, v_m \in K$.

$$
=3n-2-1-1-3+1.
$$

$$
=3n-6.
$$

 $=3n-6.$

From Case 1,Case 2 and Case 3:

(i) If
$$
n = 4
$$
, $\gamma_{ns}(S(W_n) - v) = 3n - 6 < 2n - 1 = \gamma_{ns}(S(W_n))$.

(ii) If
$$
n \ge 5
$$
, $\gamma_{ns}(S(W_n) - v) = 3n - 6 \ge 2n - 1 = \gamma_{ns}(S(W_n))$.

Hence the proof.

4 Non-split edge domination of a subdivision critical graph

Theorem 4.1. *The graph* $S(K_n)$ *is edge non-split critical for* $n > 3$ *.*

Proof. Let $C = V(S(K_n) - V(K_n))$. We consider the following cases.

Case 1: Let $e = v_1v_2 \in E(\overline{S(K_n)})$, $\{v_1, v_2\} \in V(K_n)$ then, $\gamma_{ns}(S(K_n) + e) = |V(S(K_n))| - |v_1| - |K|$, where $K = \{v_s \in C/v_s \in N(v_1)\}\$ with $|K| = n - 1.$ $=\frac{(n)(n-1)}{2}+n-1-(n-1).$

$$
=\frac{(n)(n-1)}{2} + 1 - 1.
$$

= $\gamma_{ns}(S(K_n)) - 1.$

Case 2: Let $e = v_1v_2 \in E(\overline{S(K_n)})$, $\{v_1, v_2\} \in C$, $\{v_1, v_2\} \in N(v_k)$, $v_k \in V(K_n)$ then, $\gamma_{ns}(S(K_n) + e) = |V(S(K_n))| - |v_2| - |\{v_k, v_l\}| - |K| - |R| + |v_m|$. Where $\{v_k, v_l\} \in$ $V(K_n) \cap N(v_2), v_k \in N(v_1), K = \{v_s \in C/v_s \neq (v_2, v_1), v_s \in N(v_k)\}, R = \{v_r \in C/v_r \neq 0\}$ $v_2, v_r \in N(v_l)$, with $|K| = n - 3$, $|R| = n - 2$, $v_m \in R$. $=\frac{(n)(n-1)}{2}+n-1-2-(n-3)-(n-2)+1.$

 \Box

$$
=\frac{(n)(n-1)}{2} - n + 3.
$$

= $\gamma_{ns}(S(K_n)) - (n-2).$

Case 3: Let $e = v_1v_2 \in E(\overline{S(K_n)})$, $v_1 \in V(K_n)$, $v_2 \in C$, $\{v_1, v_2\} \notin N(v_k)$, $v_k \in V(K_n)$ then, $\gamma_{ns}(S(K_n)+e) = |V(S(K_n))| - |v_2| - |\{v_k, v_l\}| - |K| - |R| + |\{v_m, v_n\}|$. Where $\{v_k, v_l\} \in$ $V(K_{m,n}) \cap N(v_2), K = \{v_s \in C/v_s \neq v_2, v_s \in N(v_k)\}, R = \{v_r \in C/v_r \neq v_2, v_r \in N(v_l)\},$ with $|K| = n - 2$, $|R| = n - 2$, $v_m \in K$, $v_n \in R$. $=\frac{(n)(n-1)}{2}+n-1-2-(n-2)-(n-2)+2.$ $=\frac{(n)(n-1)}{2}-n+3.$

$$
=\gamma_{ns}(S(K_n)) - (n-2).
$$

The result follows from $Case(1), Case(2)$ and $Case(3)$.

Lemma 4.2. *The graph* $S(C_n)$ *is non-split edge critical for* $n > 3$ *.*

Lemma 4.3. *The graph* $S(P_n)$ *is not non-split edge critical for* $n \geq 3$ *.*

Lemma 4.4. *The graph* $S(T)$ *is not non-split edge critical,if* $T \neq K_{1,n}$ *.*

Theorem 4.5. *The graph* $S(K_{m,n})$ *is not edge critical for* $m > n$ *and edge critical for* $m = n$ *where* $m, n \geq 2$ *.*

Proof. Let $V(K_{m,n}) = V_1 \cup V_2$ where $|V_1| = m$, $|V_2| = n$. Let D be the γ_{ns} set of the graph $S(K_{m,n})$ and $C = V(S(K_{m,n})) - V(K_{m,n})$. We consider the following cases:

Case 1: Let
$$
e = v_1v_2 \in E(\overline{S(K_{m,n})})
$$
, $v_1 \in D$, $v_2 \notin D$ then,
\n
$$
\gamma_{ns}(S(K_{m,n}) + e) = |D| - |v_r|, v_r \in N(v_2) \cap D.
$$
\n
$$
= \gamma_{ns}(S(K_{m,n})) - 1.
$$

Case 2: Let $e = v_1v_2 \in E(\overline{S(K_{m,n})})$, $\{v_1, v_2\} \in V_2$ or $v_1 \in C$, $v_2 \in V_2$ and suppose $m > n$ then, $\gamma_{ns}(S(K_{m,n})+e)=|V(S(K_{m,n}))|-|v_j|-|K|+|v_m|, v_j\in V_1, K=\{v_s\in C/v_s\in N(v_j)\},$ with $|K| = m$, $v_m \in K$.

$$
= mn + m + n - 1 - m + 1.
$$

$$
= n(m + 1).
$$

$$
= \gamma_{ns}(S(K_{m,n})).
$$

Suppose $m = n$ then,

$$
\gamma_{ns}(S(K_{m,n}) + e) = |V(S(K_{m,n}))| - |v_2| - |K|, K = \{v_s \in C/v_s \in N(v_2)\} \text{ with } |K| = n.
$$

= $mn + m + n - 1 - n$.
= $mn + m + n - 1 - m(\text{since } m = n)$.
= $n(m + 1) - 1$.
= $\gamma_{ns}(S(K_{m,n})) - 1$.

 \Box

Case 3: Let
$$
e = v_1v_2 \in E(\overline{S(K_{m,n})})
$$
, $\{v_1, v_2\} \in V_1$ then,
\n
$$
\gamma_{ns}(S(K_{m,n}) + e) = |V(S(K_{m,n}))| - |v_1| - |K|, K = \{v_s \in C/v_s \in N(v_1)\}
$$
 with $|K| = m$.
\n
$$
= mn + m + n - 1 - m.
$$

\n
$$
= n(m + 1) - 1.
$$

\nCase 4: Let $e = v_1v_2 \in E(\overline{S(K_{m,n})})$, $v_1 \in V_2$, $v_2 \in V_1$ or $v_1 \in C$, $v_2 \in V_1$ then,
\n
$$
\gamma_{ns}(S(K_{m,n}) + e) = |V(S(K_{m,n}))| - |v_2| - |K|, K = \{v_s \in C/v_s \in N(v_2)\}
$$
 with $|K| = m$.
\n
$$
= mn + m + n - 1 - m.
$$

\n
$$
= n(m + 1) - 1.
$$

Case 5: Let
$$
e = v_1v_2 \in E(\overline{S(K_{m,n})})
$$
, $\{v_1, v_2\} \in C$ and $\{v_1, v_2\} \in N(v_r)$, $v_r \in V_1$ then,
\n
$$
\gamma_{ns}(S(K_{m,n}) + e) = |V(S(K_{m,n}))| - |v_r| - |K| + |v_1| - |v_m|, K = \{v_s \in C/v_s \in N(v_r)\}, v_m \in N(v_2) \cap V_2 \text{ with } |K| = m.
$$
\n
$$
= mn + m + n - 1 - m + 1 - 1.
$$
\n
$$
= n(m + 1) - 1.
$$

 $=\gamma_{ns}(S(K_{m,n})) - 1.$ Otherwise $v_1 \in N(v_r), v_2 \in N(v_s), v_r \neq v_s, (v_r, v_s) \in V_1$ then, $\gamma_{ns}(S(K_{m,n})+e) = |V(S(K_{m,n}))|-|v_r|-|K|-|v_m|+|v_s|, K = \{v_s \in C/v_s \in N(v_r)\}, v_m \in$ $N(v_1) \cap V_2, v_s \in K \neq v_1$ with $|K| = m$.

$$
= mn + m + n - 1 - m - 1 + 1.
$$

= $n(m + 1) - 1$.
= $\gamma_{ns}(S(K_{m,n})) - 1$.

 $=\gamma_{ns}(S(K_{m,n}))-1.$

The result follows from the above cases.

Theorem 4.6. *The graph* $S(W_n)$ *in not edge non-split critical for* $n \geq 5$ *and edge non-split critical for* $n = 4$ *.*

Proof. Let $|V(S(W_n))| = 3n - 2$ and $B = \{v_i/v_i \in V(W_n) - v_k\}$, where v_k is the vertex of degree $n - 1$ and $C = V(S(W_n)) - V(W_n)$. We consider the following cases:

Case 1: Let $e = v_1v_k \in E(\overline{S(W_n)})$, $v_1 \in B \cup C$ then, $\gamma_{ns}(S(W_n) + e) = |V(S(W_n))| - |v_k| - |K|$ with $|K| = n - 1$ $=3n-2-1-(n-1)=2n-2.$ Since $2n - 2 < 2n - 1$. Therefore $\gamma_{ns}(S(W_n) - v) < \gamma_{ns}(S(W_n))$.

Case 2: Let $e = v_1v_2 \in E(\overline{S(W_n)})$, $v_1 \in B \cup C$, $v_2 \in C$, $\{v_1, v_2\} \notin N(v_k)$ then, $\gamma_{ns}(S(W_n) + e) = |V(S(W_n)) - v_2| - |\{v_i, v_j\}| - |\{v_r, v_s\}|$. Where $\{v_i, v_j\} \in N(v_2)$ $B, (v_r, v_s) \in N(v_k) \cap N(v_i, v_j).$

 \Box

$$
=3n-2-1-2-2.
$$

=3n-7.

- (i) If $n = 4, 5$ then $3n 7 < 2n 1$, therefore $\gamma_{ns}(S(W_n) + e) < \gamma_{ns}(S(W_n))$.
- (ii) If $n \ge 6$ then $3n 7 \ge 2n 1$, therefore $\gamma_{ns}(S(W_n) + e) \ge \gamma_{ns}(S(W_n))$.

Case 3: Let $e = v_1v_2 \in E(\overline{S(W_n)})$, $\{v_1, v_2\} \in B$ and $n \geq 5$ then, $\gamma_{ns}(S(W_n)+e) = |V(S(W_n))| - |v_k| - |K| + |v_m|$. Where $K = \{v_s \in C/v_s \in N(v_k)\}\$, $v_m \in$ K with $|K| = n - 1$. $=3n-2-1-(n-1)+1$.

$$
=2n-1.
$$

$$
=\gamma_{ns}(S(W_n)).
$$

Otherwise for $n = 4$ then, $\gamma_{ns}(S(W_n) + e) = |V(S(W_n))| - |v_1| - |K|$. Where $K = \{v_m \in$ $C/v_m \in N(v_1)$.

$$
=3n-2-1-(n-1).
$$

=3n-6.

Since $3n - 6 < 2n - 1$ for $n = 4$, therefore $\gamma_{ns}(S(W_n) + e) < \gamma_{ns}(S(W_n))$.

Case 4: Let $e = v_1v_2 \in E(\overline{S(W_n)})$, $\{v_1, v_2\} \in B \cup C$, $v_1 \notin N(v_k)$, $v_2 \in N(v_k)$ then, $\gamma_{ns}(S(W_n) + e) = |V(S(W_n))| - |v_k| - |K| - |v_r| - |v_s| + |v_m|$, Where $K = \{v_p \in C/v_p \in C\}$ $N(v_k) \cap C$, $v_r \in B \cap N(v_2)$, $v_s \in N(v_r) \cap C$, $v_s \neq (v_1, v_2)$, $v_m \neq v_2$, $v_m \in K$ with $|K| =$ $n-1$.

$$
=3n-2-1-(n-1)-1-1+1.
$$

$$
=2n-3
$$
. Otherwise $v_1 \in C \cap N(v_k)$ then,

 $\gamma_{ns}(S(W_n) + e) = |V(S(W_n))| - |v_k| - |K| - |v_r| - |v_s| + |v_1|$, Where $K = \{v_p \in C/v_p \in C\}$ $N(v_k) \cap C$, $v_r \in B \cap N(v_2), v_s \in N(v_r) \cap C$, $v_s \neq v_2$ with $|K| = n - 1$.

 \Box

$$
=3n-2-1-(n-1)-1-1+1.
$$

 $=2n-3$. Since $2n-3 < 2n-1$, therefore $\gamma_{ns}(S(W_n) - v) < \gamma_{ns}(S(W_n)).$

The result follows from the above cases.

References

- [1] Sumner, D. P. & Blitch, P. (1983) Domination critical graph, *Journal of combinatorial theory series B*, 34, 65–76.
- [2] Harary, F. (1969) *Graph Theory*, Addison-Wesley, Reading Mass.
- [3] Kulli, V. R., & Janakiram, B. (2000) The Non-split domination of the graph, *Indian J. Pure Appl.Math.*, 31, 545–550.
- [4] Lemanska, M. & Patyk, A. (2008) Weakly connected domination critical graphs, *Opuscula Mathematica*, 28(3), 325–330.
- [5] Brigham, R. C., Chinn, P. Z., & Dutton, R. D. (1988) Vertex domination critical graphs , *Networks*, 18(3), 173–179.
- [6] Sumner, D. P. (1990) Critical concepts in Domination, *Discrete Math.*, 86, 33–46.
- [7] Haynes, T. W., Hedetniemi, S. T., & Slater, P. J. (1998) *Fundamentals of Domination of graphs*, Marcel Dekker,Inc.New York.
- [8] Xue-Gang, Liang Sun, De-Xiang Ma. (2004) Connected Domination Critical graphs, *Applied Mathematics*, 17, 503–507.