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Abstract: This paper develops properties of recurrence sequences defined from circulant 

matrices obtained from the characteristic polynomial of the Pell–Padovan sequence. The study 

of these sequences modulo m yields cyclic groups and semigroups from the generating 

matrices. Finally, we obtain the lengths of the periods of the extended sequences in the 

extended triangle groups E(2, n, 2), E(2, 2, n)  and E(n, 2, 2) for n ≥ 3 as applications of the 

results obtained. 
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1 Introduction 

The Pell–Padovan sequence ( ){ }P n  is defined [24,25] by a third-order recurrence equation: 

 ( ) ( ) ( )3 2 1P n P n P n+ = + +  (1.1) 

for 0n ≥ , where ( ) ( ) ( )0 1 2 1P P P= = = . The characteristic polynomial of the sequence is 

then 

( ) 3 2 1f x x x= − − . 

The circulant (or Toeplitz) matrix n ij n n
C c

×
 =   associated with the numbers 0 1 1, , , nc c c −�  is 

defined as follows [8]: 
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so that the ( )1 thn −  degree polynomial  

( ) 1

0 1 1

n

nP x c c x c x
−

−= + + +�  

is called the associated polynomial of the circulant matrix 
n

C  [cf. 3,4,16,21,23]. 

Suppose that the ( ) thn k+ term of a sequence is defined recursively by a linear 

combination of the preceding k terms:  

0 1 1 1 1,n k n n k n k
a c a c a c a+ + − + −= + + +�  

where 0 1 1, , ,
k

c c c −…  are real constants. In [17], Kalman developed a number of closed-form 

formulas for this generalized sequence by the companion matrix method as follows: 

0 1 2 2 1

0 1 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 1

k

k k

A

c c c c c− −

 
 
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 

=  
 
 
 
  
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. 

Number theoretic properties such as these obtained from homogeneous linear recurrence 

relations relevant to this paper have been studied by many authors [18, 26, 27, 29, 30, 31, 32, 

34]. In Section 2, we define the generalized Pell–Padovan-circulant sequence and the Pell–

Padovan-circulant sequences of the first, second and fourth kind such that these sequences are 

obtained from the circulant matrix 4

P
C  which are defined by using the characteristic polyno-

mial of the Pell–Padovan sequence. Then we develop some their miscellaneous properties.  

In [9, 10, 11, 12, 13, 20], the authors derived the cyclic groups and the semigroups via 

some special matrices. In Section 3, we consider the cyclic groups and semigroups which are 

generated by the multiplicative orders of the circulant matrix 4

P
C  and the generating matrices 

of the Pell–Padovan-circulant sequences of the first, second and fourth kind when read 

modulo m. Also, we study Pell–Padovan-circulant sequences and the Pell–Padovan-circulant 
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sequences of the first, second and fourth kind modulo m and then we develop relationships 

among the orders of the cyclic groups obtained and the periods of these sequences.  

The study of recurrence sequences in groups began with the earlier work of Wall [33] 

where the ordinary Fibonacci sequences in cyclic groups were investigated. The concept 

extended to some special linear recurrence sequences by several authors; see for example, 

[2, 5, 9, 12, 13, 14, 15, 19, 20, 22, 28]. In Section 4, we define the Pell–Padovan-circulant orbit 

by means of the elements of the groups which have two or more generators, and then we 

examine this sequence in finite groups. Furthermore, we examine the behaviours of the lengths 

of the periods of the Pell–Padovan-circulant orbits of the extended triangle groups E(2, n, 2), 

E(2, 2, n)  and E(n, 2, 2) for n ≥ 3. 

2 The Pell–Padovan-circulant sequences 

The circulant matrix 4

P
C  for the polynomial ( )f x  is as follows: 

4

-1 1 0 -2

-2 -1 1 0

0 -2 -1 1

1 0 -2 -1

P
C

 
 
 =
 
 
 

. 

We now define new sequences, the generalized Pell–Padovan-circulant sequences, by the 

recurrence relations of orders 4, 5 and 7 (in which the second and the third are essentially the 

same): 

 

1 3 4

3 4 5

3 4 5

4 5 7,

2 , 1 mod 4,

2 ,  2 mod 4,

2 ,  3 mod 4,

2 0 mod 4

c c c

n n n

c c c

n n nc

n c c c

n n n

c c c

n n n

P P P n

P P P n
P

P P P n

P P P n

− − −

− − −

− − −

− − −

− + − ≡


− − ≡
= 

− − ≡
− − + ≡

   for 4n > , (2.1) 

where 1 2 3 40 and 1c c c c
P P P P= = = = . It can be readily established by mathematical induction 

that for 0n ≥ , 

 ( )

4 4 4 3 4 2 4 1

4 1 4 4 4 3 4 2

4

4 2 4 1 4 4 4 3

4 3 4 2 4 1 4 4

c c c c

n n n n

c c c c
n

P n n n n

c c c c

n n n n

c c c c

n n n n

P P P P

P P P P
C

P P P P

P P P P

+ + + +

+ + + +

+ + + +

+ + + +

 
 
 =
 
 
  

,  (2.2) 

from which it is clear that 4det 0P
C = . From (2.1) we define the Pell–Padovan-circulant 

sequences of the first, second and fourth kind respectively by: 

 
1 1 1 1

1 3 42n n n nP P P P− − −= − + −  for 4n >  where 
1 1 1

1 2 3 0P P P= = =  and 
1

4 1P = , (2.3) 

 
2 2 2 2

3 4 52n n n nP P P P− − −= − −  for 5n >  where 
2 2

1 4 0P P= = =�  and 
2

5 1P =   (2.4) 
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4 4 4 4

4 5 72n n n nP P P P− − −= − − +  for 7n >  where 
4 4

1 6 0P P= = =�  and 
4

7 1P =  (2.5) 

The generating functions of the Pell–Padovan-circulant sequences of the first, second and 

fourth kind are then: 

( ) ( )
3

1

4 3 2 1

x
f x

x x x
=

− + +
, 

( ) ( )
4

2

5 4 32 1

x
f x

x x x
=

+ − +
 

and 

( ) ( )
6

4

7 5 42 1

x
f x

x x x
=

− + + +
. 

By (2.3), (2.4) and (2.5), we can write the following companion matrices: 

( )1

-2 0 1 -1

1 0 0 0

0 1 0 0

0 0 1 0

P
M

 
 
 =
 
 
 

, 

( )2

0 0 1 -1 -2

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

P
M

 
 
 
 =
 
 
  

 

and 

( )4

0 0 0 -1 -2 0 1

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 0 0

P
M

 
 
 
 
 

=  
 
 
 
 
 

. 

and we call the matrices 
( )1

P
M , 

( )2

P
M  and 

( )4

P
M  Pell–Padovan-circulant matrices of the first, 

second and fourth kind.  Again by an inductive argument, we may write 

 

 
( )( )

1 1 1 1 1 1

4 2 1 3 2 3

1 1 1 1 1 1
1 3 1 2 1 2

1 1 1 1 1 1

2 1 1 1

1 1 1 1 1 1

1 1 2 1

n n n n n n

n
n n n n n n

P

n n n n n n

n n n n n n

P P P P P P

P P P P P P
M

P P P P P P

P P P P P P

+ + + + + +

+ + + + +

+ − + +

+ − − −

 − − −
 

− − − =
 − − −
 

− − −  

,  (2.6) 
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( )( )
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2 2 2 2 2 2

4 5 6 7 4 3

2 2 2 2 2 2 2

3 4 5 6 3 2

2 2 2 2 2 2

2 3 4 5 2 1

2 2 2 2 2 2

1 2 3 4 1

2

2

2

2

2

n n n n n n

n n n n n n
n

P n n n n n n

n n n n n n

n n n n n n

P P P P P P

P P P P P P

M P P P P P P

P P P P P P

P P P P P P

+ + + + + +

+ + + + + +

+ + + + + +

+ + + + + +

+ + + + +

 − −
 

− − 
 = − −
 

− − 
 − − 

  (2.7) 

and 

 
( )( )

4 4 4 4 4 4 4 4

7 8 9 10 6 4 5 6

4 4 4 4 4 4 4 4

6 7 8 9 5 3 4 5

4 4 4 4 4 4 4 4

5 6 7 8 4 2 3 4

4 4 4 4 4 4 4 4 4

4 5 6 7 3 1 2 3

4 4 4 4

3 4 5 6

2

2

2

2

2

n n n n n n n n

n n n n n n n n

n n n n n n n n
n

P n n n n n n n n

n n n n

P P P P P P P P

P P P P P P P P

P P P P P P P P

M P P P P P P P P

P P P P

+ + + + + + + +

+ + + + + + + +

+ + + + + + + +

+ + + + + + + +

+ + + +

− +

− +

− +

= − +

− 4 4 4 4

2 1 2

4 4 4 4 4 4 4 4

2 3 4 5 1 1 1

4 4 4 4 4 4 4 4

1 2 3 4 2 1

2

2

n n n n

n n n n n n n n

n n n n n n n n

P P P P

P P P P P P P P

P P P P P P P P

+ + +

+ + + + + − +

+ + + + − −

 
 
 
 
 
 
 +
 
 − +
 

− + 

. (2.8) 

Note that 
( ) ( )1 4

det det 1
P P

M M= =  and 
( )2

det 2
P

M = − . It is well-known that the Simson 

formula for a recurrence sequence can be obtained from the determinant of its generating 

matrix, so that the Simpon formula for the generalized Pell–Padovan-circulant sequences is as 

follows: 

( )( ) ( )( )( )4 2 4 4 4 2 4 4 4 1 4 3 4 1 4 3

C C C C C C C C

n n n n n n n nP P P P P P P P+ + + + + + + +− + − − + ⋅

( )( ) ( )( )( )4 2 4 4 4 2 4 4 4 1 4 3 4 1 4 3

C C C C C C C C

n n n n n n n nP P P P P P P P+ + + + + + + +⋅ − + + − + +

( ) ( )( ) ( ) ( )( )2 2 2 2

4 2 4 4 4 1 4 3 4 1 4 3 4 2 4 44 4 0C C C C C C C C

n n n n n n n nP P P P P P P P+ + + + + + + ++ + − + =  

It is easy to see that the characteristic equations of the Pell–Padovan-circulant sequences 

of the first, second and fourth kind do not have multiple roots; that is, each of the eingenvalues 

of the matrices 
( )1

PM , 
( )2

PM  and 
( )4

PM  are distinct. 

Let ( ) ( ) ( ) ( ){ }1 1 1 1

1 2 3 4, , ,α α α α , ( ) ( ) ( ) ( ) ( ){ }2 2 2 2 2

1 2 3 4 5, , , ,α α α α α  and ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }4 4 4 4 4 4 4

1 2 3 4 5 6 7, , , , , ,α α α α α α α  

be the sets of the eingevalues of the matrices 
( )1

PM , 
( )2

PM  and 
( )4

PM , respectively and let ( )k
V  be 

a ( ) ( )3 3k k+ × +  Vandermonde matrix as follows: 

( )

( )( )
( )( )

( )

( )( )
( )( )

( )

( )( )
( )( )

( )

( )( )
( )( )

( )

2 22 2

2 31 2

1 11 1

2 31 2

2 31 2

1 1 1 1

k kk k
k kk k

k k

k kk k
k kk k

k k
k

k kk k

k k

V

α αα α

α αα α

α αα α

+ ++ +

+ +

+ ++ +

+ +

+ +

 
 
 
 
 =
 
 
 
  

…

�

� �� � �

…

…

, 

where 1, 2, 4k = .  Suppose now that  
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( )( )
( )( )

( )( )

3

1

3

2

3

3

n k i
k

n k i
k

i

k

n k i
k

k

W

α

α

α

+ + −

+ + −

+ + −

+

 
 
 
 

=  
 
 
  

�
 

and ( ),k i

j
V  is a ( ) ( )3 3k k+ × +  matrix obtained from ( )k

V  by replacing the thj column of ( )k
V  

by 
i

kW . This yields the Binet-type formulas for the Pell–Padovan-circulant sequences of the 

first, second and fourth kind, namely: 

 

Theorem 2.1. Let 
k

nP   be the thn term of the sequence of the kth kind for 1, 2, 4k = . Then 

( )
( )

( )

,

, det

det

k i

k n j

ij k

V
m

V
=  

where 
( )( ) ( ),

n
k k n

P ij
M m =    such that 1, 2, 4k = . 

Proof. Since the eigenvalues of the matrix 
( )k

PM  are distinct, the matrix 
( )k

PM  is diagonalizable. 

Let  

( ) ( ) ( ) ( ) ( )( )1 1 1 1 1

1 2 3 4diag , , ,D α α α α= , 

( ) ( ) ( ) ( ) ( ) ( )( )2 2 2 2 2 2

1 2 3 4 5diag , , , ,D α α α α α=  

and 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )4 4 4 4 4 4 4 4

1 2 3 4 5 6 7diag , , , , , ,D α α α α α α α= , 

then it is readily seen that 
( ) ( ) ( ) ( )k k k k

PM V V D= . Since the matrix ( )k
V  is invertible,  

( )( ) ( ) ( ) ( )
1

k k k k

P
V M V D

−

= . 

Thus, the matrix 
( )k

PM  is similar to ( )k
D . So we get for 1n ≥  that 

( )( ) ( ) ( ) ( )( )
n n

k k k k

P
M V V D=  . 

Then we can write the following linear system of equations for 1n ≥ : 

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

2 1 3
, , ,

1 1 2 1 3 1

2 1 3
, , ,

1 2 2 2 3 2

2 1 3
, , ,

1 3 2 3 3 3 .

k k n k i
k n k k n k k n k

i i ik

k k n k i
k n k k n k k n k

i i ik

k k n k i
k n k k n k k n k

i k i k ik k

m m m

m m m

m m m

α α α

α α α

α α α

+ + + + −

+

+ + + + −

+

+ + + + −

+ + + +

+ + + =

+ + + =

+ + + =

�

�

�

�
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from which we obtain 

  
( )

( )

( )

,

, det

det

k i

k n j

ij k

V
m

V
=  for 1, 2, 4k =  and , 1, 2, , 3i j k= … + .  � 

3 The Pell–Padovan-circulant sequences modulo m  

For given a matrix ijA a =    with ij
m  integers, ( )modA m  means that each element of A  is 

reduced modulo m , that is, ( ) ( )( )mod modijA m a m= . Let us consider the set  

( ){ }mod 0i

m
A A m i= ≥ . If ( )gcd , det 1m A = , then the set 

m
A  is a cyclic group; if  

( )gcd , det 1m A ≠ , then the set 
m

A  is a semigroup. Let the notation 
m

A  denote the order 

of the set 
m

A .  

Since 4det 0P
C = , it is clear that the set 4

P

m
C  is a semigroup group for every positive 

integer m . Similarly, since 
( ) ( )1 4

det det 1P PM M= = , 
( )1

P
m

M  and 
( )4

P
m

M are cyclic groups for 

every positive integer m . Moreover 
( )2

P
m

M  is a cyclic group if m  is an odd integer and 

( )2

P
m

M  is a semigroup if m  is an even integer. 

We next consider the orders of the semigroups and the cyclic groups generated by the 

matrices 4

P
C , 

( )1

P
M , 

( )2

P
M  and 

( )4

P
M . 

 

Theorem 3.1. Let λ  be a prime and let nG
λ

 be any of the sets of 4 n

P
C

λ
, 

( )1

nP
M

λ
, 

( )2

nP
M

λ
 and 

( )4

nP
M

λ
 such that n N∈ . If u  is the largest positive integer such that 

uG G
λ λ

= , then v

v u
G G

λ λ
λ −= ⋅  for every v u≥ . In particular, if 2G G

λ λ
≠ , 

then 1
v

v
G G

λ λ
λ −= ⋅  for every 2v ≥ . 

Proof. We consider the semigroup 4 n

P
C

λ
. Suppose that a  is a positive integer and 4 n

PC
λ

 is 

denoted by ( )n
h λ . If ( )

( )
( )

1

1

4 mod
ah

P aC I
λ

λ
+

+≡ , then ( )
( )

( )
1

4 mod
ah

P aC I
λ

λ
+

≡  where I  is a 

4 4×  identity matrix and sot ( )a
h λ | ( )1a

h λ + . Furthermore, if we denote  

( ) ( ) ( )( )4

ah aP a

ijC I c
λ

λ= + ⋅ , 

then by the binomial expansion, we obtain 

( ) ( ) ( )( )( ) ( )( ) ( )1

4

0

mod
a ih a aP a a a

ij ij

i

C I c c I
i

λλλ λ λ
λ λ λ

⋅ +

=

 
= + ⋅ = ⋅ ≡ 

 
∑ , 

which yields that ( )1a
h λ + | ( )a

h λ λ⋅ . Thus, ( ) ( )1a a
h hλ λ+ =  or ( ) ( )1a a

h hλ λ λ+ = ⋅ .  

It is clear that ( ) ( )1a a
h hλ λ λ+ = ⋅  holds if and only if there exists an integer ( )a

ij
c  which is not 

divisible by λ . Since u  is the largest positive integer such that ( ) ( )u
h hλ λ= , we have 
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( ) ( )1u u
h hλ λ +≠ . Then, there exists an integer ( )1u

ij
c

+
 which is not divisible by λ .  So we find 

that ( ) ( )1 2u u
h hλ λ+ +≠ . To complete the proof we use an inductive method on u  .  

There are similar proofs for the sets 
( )1

nP
M

λ
, 

( )2

nP
M

λ
 and 

( )4

nP
M

λ
.                                    � 

 

Theorem 3.2. Let m  be an positive integer and let 
m

G  be any of the sets of 
4

P

m
C , 

( )1

P
m

M

, 
( )2

P
m

M  and 
( )4

P
m

M . Suppose that ( )
1

, 1i

k
e

i

i

m kλ
=

= ≥∏  where 
i

λ ’s are distinct primes. Then 

1 2
1 2

lcm , , , ee e k
km

G G G G
λ λ λ

 =
 

… . 

Proof. Let us consider the cyclic group ( )1

P
m

M . Suppose that ( )1

ei
i

P i
M

λ
β=  for 1 i k≤ ≤  and 

let 
( )1

P
m

M β= . Then by (2.6), we obtain in turn 

1

4

1

3

1

2

1

1

1

1 mod ,

0 mod ,

0 mod ,

0 mod ,

1 mod

i

i

i

i

i

i

i

i

i

i

e

i

e

i

e

i

e

i

e

i

P p

P p

P p

P p

P p

β

β

β

β

β

+

+

+

+

≡

≡

≡

≡

≡ −

 

and  

1

4

1

3

1

2

1

1

1

1 mod ,

0 mod ,

0 mod ,

0 mod ,

1 mod .

P m

P m

P m

P m

P m

β

β

β

β

β

+

+

+

+

≡

≡

≡

≡

≡ −

 

This implies that 
1 1

iu uP Pβ βλ+ += ⋅  for  0 4u≤ ≤  and Nλ ∈  that is, 
( )( )1

P
M

β

 is the form 

( )( )1 i

P
t M

β

⋅  for all values of i .  Thus it is verified that  

( ) ( ) ( ) ( )
1 2

1 2

1 1 1 1
lcm , , ,

ee e k
k

P P P P
m p p p

M M M M =
  

… . 

There are similar proofs for the sets 4

P

m
C ,  

( )2

P
m

M  and 
( )4

P
m

M .                                        � 

 

It is well-known that a sequence is periodic if, after a certain point, it consists only of 

repetitions of a fixed subsequence. The number of elements in the repeating subsequence is the 

period of the sequence. A sequence is simply periodic with period k if the first k elements in 

the sequence form a repeating subsequence. 
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If we reduce the generalized Pell–Padovan-circulant sequences and the Pell–Padovan-

circulant sequences of the first, second and fourth kind by a modulus m, then we get the 

repeating sequences, respectively denoted by 

( ){ } ( ) ( ) ( ) ( ){ }1 2 3, , , , ,c c c c c

n i
P m P m P m P m P m= … …  

and 

( ){ } ( ) ( ) ( ) ( ){ }1 2 3, , , , ,k k k k k

n i
P m P m P m P m P m= … … , 

where ( ) ( )mod c c

i iP m P m= , ( ) ( )mod k k

i iP m P m=  and 1,2,4k = . They have the same 

recurrence relations as in (2.1), (2.3), (2.4) and (2.5), respectively. 

 

Theorem 3.3. The cases of the sequences { }c

n
P , { }1

n
P , { }2

n
P  and { }4

n
P  (modulo m) are: 

• The sequence ( ){ }c

n
P m  is periodic for every positive integer m.  

• The sequences ( ){ }1

n
P m  and ( ){ }4

n
P m  are simply periodic for every positive integer 

m .  

• The sequence ( ){ }2

n
P m  is periodic for every positive integer m . In particular, if 

( )gcd 2, 1m = , then the sequence ( ){ }2

n
P m  will be simply periodic.     

Proof. Let us consider the Pell–Padovan-circulant sequence of the fourth kind ( ){ }4

n
P m as an 

example. Let ( ){ }1 2 3 4 5 6 7, , , , , , 0 1
i

S s s s s s s s s m= ≤ ≤ − , then 7
S m= . Since there are 7

m  

distinct 7-tuples of elements of 
m
� , at least one of the 7-tuples appears twice in the sequence 

( ){ }4

n
P m . Thus, the subsequence following this 7-tuple repeats; that is the sequence is 

periodic. Let   ( ) ( )4 4

7 7i jP m P m+ +≡ , ( ) ( )4 4

6 6i jP m P m+ +≡ ,… , ( ) ( )4 4

1 1i jP m P m+ +≡  and i j> , then 

mod 7i j≡ . From the definition, we can easily derive that  

( ) ( )4 4

i jP m P m≡ , ( ) ( )4 4

1 1i jP m P m− −≡ , … , ( ) ( )4 4

2 2i jP m P m− + ≡ , ( ) ( )4 4

1 1i jP m P m− + ≡ . 

So we get that the sequence is a simply periodic. 

There are similar proofs for the sequences ( ){ }c

n
P m , ( ){ }1

n
P m  and ( ){ }2

n
P m . � 

 

We next denote the periods of the sequences ( ){ }c

n
P m , ( ){ }1

n
P m , ( ){ }2

n
P m  and 

( ){ }4

n
P m  by ( )c

Pl m , ( )1

Pl m , ( )2

Pl m  and ( )4

Pl m , respectively, and we present the relationships 

among the periods ( )1

Pl m , ( )2

Pl m , ( )4

Pl m  and the orders ( )1

P
m

M , ( )2

P
m

M , ( )4

P
m

M , 

respectively, in the following result.    
 
Corollary 3.1. If λ  is a prime such that 2λ ≠ , then the period ( )2

Pl λ  is equal to the order of 

the cyclic group 
( )2

P
M

λ
. Also, ( ) ( )11

P P
l M

λ
λ =  and ( ) ( )44

P P
l M

λ
λ =  for every prime λ . 

Proof. This follows directly from (2,6), (2.7) and (2.8).                                                             �                                                  
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Let λ  be a prime and let  

( ) ( ){ }4 3

1 mod : , 2 1nA x n x x xλ λ= ∈ = − + −�  

and  

( ) ( ){ }7 3 2

4 mod : , 2 1nA x n x x xλ λ= ∈ = − − +�    

such that 1u ≥ . Then, it is clear that the sets ( )1A λ  and ( )4A λ  are cyclic groups. 

Now we can give relationships among the characteristic equations of the Pell–Padovan-

circulant sequences of the first and fourth kind and the periods ( )1

Pl m  and ( )4

Pl m . 

 

Corollary 3.2. Let λ  be a prime. Then, the cyclic groups ( )1A λ  and ( )4A λ are isomorphic to 

the cyclic groups 
( )1

P
M

λ
and 

( )4

P
M

λ
, respectively.                                                                 � 

4 The Pell–Padovan-circulant sequences in groups 

In this section, we define the Pell–Padovan-circulant orbit by means of the elements of the 

groups which have two or more generators, and then we examine this sequence in finite 

groups. Finally, we obtain the lengths of the periods of the Pell–Padovan-circulant orbits of the 

extended triangle groups E(2, n, 2), E(2, 2, n)  and E(n, 2, 2) for n ≥ 3 as applications of the 

results obtained.  

 

Let G be a finite j-generator group and let X be the subset of 
j

G G G G× × × ×���������	  such that 

( )1 2, , ,
j

x x x X∈…  if, and only if, G is generated by 1 2, , ,
j

x x x… . We call ( )1 2, , ,
j

x x x…  a 

generating j-tuple for G.  
 

Definition 4.1. Let G X=  be a finitely generated group such that { }1 2, , ,
j

X x x x= … . Then 

we denote the Pell–Padovan-circulant orbit by means of: 

( ) ( )( )
1 2

1 1 1 1

4 3 1n n n n
x x x x

− −

− − −=  

for 5n ≥ , with initial conditions 

( )

( ) ( )

( ) ( ) ( )

11 1 1 1

1 1 2 2 3 3 4 4

1 11 1 1 1

1 1 2 1 3 2 4 3

1 1 11 1 1 1

1 1 2 1 3 1 4 2

, , , if 4,

, , , if 3,

, , , if 2,

x x x x x x x x j

x x x x x x x x j

x x x x x x x x j

−

− −

− − −

 = = = = =



= = = = =


= = = = =

 

For a j-tuple ( )1 2, , ,
j

x x x X∈… , the Pell–Padovan-circulant orbit is denoted by 
( ) ( )

1 2, , , j

c

x x x
P G

…
. 

 
Theorem 4.1. The Pell–Padovan-circulant orbit of a finite group is simply periodic. 
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Proof. Suppose that n  is the order of G . Since there n4 distinct 4-tuples of elements of G, at 

least one of the 4-tuples appears twice in the sequence 
( ) ( )

1 2, , , j

c

x x x
P G

…
. Thus, consider the 

subsequence following this 4-tuple. Because of the repetition, the sequence is periodic. Since 

the orbit 
( ) ( )

1 2, , , j

c

x x x
P G

…
 is periodic, there exist natural numbers  and u v , with u v≥ , such that 

1 1 1 1 1 1 1 1

1 1 2 2 3 3 4 4,  , and
u v u v u v u v

x x x x x x x x+ + + + + + + += = = = . 

By the definition of the sequence 
( ) ( )

1 2, , , j

c

x x x
P G

…
, we know that  

( ) ( )( ) ( )
2 1

1 1 1 1

4 3 1n n n n
x x x x

− −

− − −= . 

Therefore, we obtain 1 1

u v
x x= , and hence, 

( ) ( ) ( ) ( ) ( ) ( )
1 1 1 1 1 1 1 1 1

1 2 31 1 2 2 3 3
 , ,  

u v v v u v v v u v v v
x x x x x x x x x

− − − − − − − − − − − −
= = = = = =   

and  

( ) ( )
1 1 1

44 4u v v v
x x x

− − − −
= = , 

which implies that 
( ) ( )

1 2, , , j

c

x x x
P G

…
 is a simply periodic sequence.                                               � 

Let 
( ) ( )

1 2, , , j

c

x x x
LP G

…
 denote the length of the period of the orbit 

( ) ( )
1 2, , , j

c

x x x
P G

…
.  From the 

definition of the orbit 
( ) ( )

1 2, , , j

c

x x x
P G

…
 it is clear that the period of this sequence in a finite group 

depend on the chosen generating set and the order in which the assignments of 1 2, , ,
j

x x x…  are 

made. 
The triangle group (polyhedral group) (p, q, r) for p, q, r > 1, is defined by the 

presentation  

, , : p q rx y z x y z xyz e= = = =  

or 

( ), :
rp q

x y x y xy e= = = . 

The triangle group ( ), ,p q r  is finite if and only if the number  

1 1 1
1pqr qr rp pq pqr

p q r
µ

 
= + + − = + + − 

 
 

is positive. Its order is 2 pqr µ .  

Using Tietze transformations we may show that ( ) ( ) ( ), , , , , ,p q r q r p r p q≅ ≅ [6, pp.67–

68].  The extended triangle group E(p, q, r) for p, q, r > 1 is defined by the presentation  

. ( ) ( ) ( )2 2 2, , :
p q r

x y z x y z xy yz zx e= = = = = =
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The triangle groups (p, q, r) are index two subgroups of extended triangle groups  

E(p, q, r)  [1, 5, 7] and the extended triangle groups are a very important class of groups 

closely linked to the automorphism groups of regular maps [6]. 

 

We now address the periods of the Pell–Padovan-circulant orbits of the extended triangle 

groups E(2, n, 2), E(2, 2, n)  and E(n, 2, 2) for n ≥ 3.  

 
Theorem 4.2. For 3n ≥ ,  

( ) ( )( ) ( ) ( )( ), , , ,

15
if 0 mod 4,

2

2, , 2 2,2, 15 if 2 mod 4,

30 otherwise.

c c

x y z x y z

n
n

LP E n LP E n n n

n


≡


= = ≡





 

Proof. We prove this by direct calculation. Note that ( )1 2 15Pl = . The orbit ( ) ( )( ), ,
2, ,2c

x y z
P E n  

is 

( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

2 6

12 3 8 22 9 13 14 13

4 3 3 11 4 8 7 7

, , , , , , , , , , , , , , , , ,

, , , , , , , ,

, , , , , , , , , .

x x y z e xy yz yzy xy xz y yzx zy xyz yzyx x zy x yz

y zy y zy yz xy zy yz y zy xy zy xy zy

y zy xzy yz x yz xy zy x yz x zy z yz y zy …

 

Using the above, the sequence becomes: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )1 2 3 2

1 2 3 4

4 8 7 7

31 32 33 34

4 4 4 1 4 1

30 1 30 2 30 3 30 4

, , , , ,

, , , , ,

, , , , ,
i i i i

i i i i

x x x x x y x z

x x yz x x zy x z yz x y zy

x x yz x x zy x z yz x y zy
β β β β⋅ ⋅ ⋅ − ⋅ −

+ + + +

= = = =

= = = =

= = = =

…

…

…

 

where 1 2 3 4, , andβ β β β  are positive odd numbers such that ( )1 2 3 4gcd , , , 1β β β β = . So we 

need the smallest integer i  such that 4i n k= ⋅  for k N∈ . 

• If 0 mod 4n ≡ , then 
4

n
i = , and we obtain ( ) ( )( ), ,

15
2, , 2 30

4 2

c

x y z

n n
LP E n = ⋅ = . 

• If 2 mod 4n ≡ , then 
2

n
i = , and we obtain ( ) ( )( ), ,

2, , 2 30 15
2

c

x y z

n
LP E n n= ⋅ = . 

• If 1 mod 4n ≡  or 3 mod 4n ≡ , then i n= , and we obtain ( ) ( )( ), ,
2, , 2 30c

x y z
LP E n n= . 

There is a similar proof for the orbit ( ) ( )( ), ,
2,2,c

x y z
P E n .                                                            � 

 
Theorem 4.3. For 3n ≥ ,  

( ) ( )( ), ,

15
if  is even,

, 2, 2 2

15 if   is odd.

c

x y z

n
n

LP E n

n n




= 


 

Proof. This is similar to the proof of Theorem 4.2.                                                                    � 
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