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1 Introduction

Recently, the subjects of pattern avoidance and permutation patterns have taken a lot of interest.
Initially, the idea on the subjects has initiated by Knuth [7] and Simion and Schmidt [12] who
considered the problem on permutations and enumerated the number of permutations of [n] =
{1, 2, . . . , n} avoiding a particular element or subset, respectively, of patterns of length three.

Afterwards the problem has been linked with several other discrete structures, such as compo-
sitions, k-ary words, and set partitions; see, e.g., the texts [8, 9] and references contained therein.
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We say a permutation is standard if its support set is an initial segment of the positive inte-
gers, and for a permutation π whose support is any set of positive integers, St(π) is the standard
permutation obtained by replacing the smallest entry of π by 1, next smallest by 2, and so on.
As usual, a standard permutation π of [n] avoids a standard permutation τ of [k] if there is no
subsequence ρ of π for which St(ρ) = τ . In this context, τ is a k-letter pattern (or just simply, a
pattern). For a set T of patterns, Sn(T ) denotes the set of permutations of [n] that avoid all the
patterns in T (for example, see [10, 11] for subsets of at least ten 4-letter patterns and [2–6] for a
class of three 4-letter patterns). We denote generating function for the number of permutations of
Sn(T ) (T -avoiders of [n]) by FT (t), namely

FT (t) =
∑
n≥0

|Sn(T )|tn.

Two sets of patterns T and T ′ are said to be Wilf-equivalent if their avoiders have the same
counting number, that is, if |Sn(T )| = |Sn(T

′)| for all n ≥ 0. In the context of pattern avoidance,
a symmetry class refers to an orbit of the dihedral group of order eight generated by the operations
reverse, complement, and inverse acting entrywise on sets of patterns. Two pattern sets in the
same symmetry class are trivially Wilf-equivalent.

In [1], the authors interested on the number of data structures of a certain wreath product type.
In particular, they showed that the generating function of the number of permutations of [n] that
avoid A1 = {2413, 3142, 3124, 1423} is given by

FA1(t) =
C(t)

1− t3C5(t)
,

where

C(t) =
1−
√
1− 4t

2t
=
∑
n≥0

1

n+ 1

(
2n

n

)
tn

is the generating function of the Catalan numbers.
In this paper we are interested in avoidance problem on permutations. Our experiments with

numerical computations show that at most 19 classes of quadruples of 4-letter patterns have same
number of avoiders with A1-avoiders. Our main result can be formulated as follows.

Theorem 1. Let

A1 = {2413, 3142, 3124, 1423}, A2 = {2431, 4132, 1432, 1324}, A3 = {2143, 2413, 3241, 3142},
A4 = {2431, 2341, 2314, 3142}, A5 = {2431, 2314, 3241, 3142}, A6 = {2143, 1432, 1324, 1423},
A7 = {2143, 1324, 1342, 1243}, A8 = {2134, 1324, 1342, 1243}, A9 = {2134, 1342, 1243, 1234},
A10 = {3142, 1342, 2431, 2341}, A11 = {2431, 2413, 2314, 3241}, A12 = {1342, 2341, 2413, 2431},
A13 = {3142, 1432, 1342, 1324}, A14 = {3142, 1342, 1324, 1423}, A15 = {3124, 1342, 1324, 1243},
A16 = {3124, 1324, 1423, 1243}, A17 = {3124, 1324, 1423, 1234}, A18 = {1324, 2341, 3241, 3421},
A19 = {1243, 1342, 1423, 2341}.

Then the generating function for the number of permutations of size n that avoid Aj is given by

FAj
(t) =

C(t)

1− t3C5(t)
,
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where j = 1, 2, . . . , 19.

To prove our main result, our main strategy is to examine the structure of an avoider, usually
by splitting the class of avoiders under consideration into subclasses according to a judicious
choice of parameters which may involve, for example, left-right maxima, initial letters, positions
of given letters, and whether resulting subpermutations are empty or not.

2 Proofs

A permutation π expressed as π = i1π
(1)i2π

(2) · · · imπ(m), where i1 < i2 < · · · < im and
ij > max(π(j)) for 1 ≤ j ≤ m is said to have m left-right maxima (at i1, i2, . . . , im). Given
nonempty sets of numbers S and T , we will write S < T to mean max(S) < min(T ) (with the
inequality vacuously holding if S or T is empty). In this context, we will often denote singleton
sets simply by the element in question.

Let T be any pattern set. Throughout the paper, a(n) denotes the the number of T -avoiders
of size n. Moreover, a(n; i1i2 · · · is) denotes the number of T -avoiders π1π2 · · · πn of size n such
that πj = ij for all j = 1, 2, . . . , s.

2.1 Case 2: T = {2431,4132,1432,1324}

Lemma 2. Let T = {2431, 4132, 1432, 1324}. Let Hm(t) be the generating function for the
number of permutations (n+1−m)π(1)(n+2−m)π(2) · · ·nπ(m) ∈ Sn(T ). ThenHm(t) satisfies

Hm(t) = tm +
m−1∑
j=1

tjC(t)Hm+1−j(t) + tHm(t) + tm+1C(t)(C(t)− 1),

for all m ≥ 2.

Proof. Let us write an equation for Hm(t) with m ≥ 2. Let π = (n + 1 − m)π(1)(n + 2 −
m)π(2) · · ·nπ(m) ∈ Sn(T ) with n > m. Note that π(1)π(2) · · · π(m) avoids 132. If n−m belongs
to π(s) with s = 1, 2, . . . ,m − 1, then π(1) = · · · = π(s−1) = ∅ because π avoids 1324, so
we have a contribution of tsC(t)Hm+1−s(t). Otherwise, n − m belongs to π(m), so we can
write π(m) = α(n − m)β. If β = ∅, then we have a contribution of tHm(t), otherwise, π =

(n + 1−m) · · ·nα(n−m)β such that α > β and α, β avoid 132. Thus, we have a contribution
of tm+1C(t)(C(t)− 1) (see [7]). Hence,

Hm(t) = tm +
m−1∑
j=1

tjC(t)Hm+1−j(t) + tHm(t) + tm+1C(t)(C(t)− 1),

where tm counts the case n = m.

Lemma 3. Let T = {2431, 4132, 1432, 1324}. Let Jm,k(t) be the generating function for the
number of permutations

(n−m)π(1) · · · (n+ k− 1−m)π(m−k)(n+ k+1−m)π(m+1−k) · · ·nπ(m)(n+ k−m) ∈ Sn(T ).

81



Then Jm,1(t) = tHm(t) and Jm,k(t) = tkCk−1(t)Hm+1−k for all k = 2, 3, . . . ,m − 1, where
Hm(t) is given in statement of Lemma 2.

Proof. Let us find a formula for Jm,k(t). Let π ∈ Sn(T ) with the form

π = (n−m)π(1) · · · (n+ k − 1−m)π(m−k)(n+ k + 1−m)π(m+1−k) · · ·nπ(m)(n+ k −m).

By Lemma 2, we have that Jm,1(t) = tHm(t). Let k = 2, 3, . . . ,m − 1. Since π avoids 1324,
we see that π(1) > π(2) > · · · > π(k−1) > π(k)π(k+1) · · · π(m) and π(s) avoids 132 for all s =

1, 2, . . . , k−1, which, by Lemma 2, implies that Jm,k(t) = tkCk−1(t)Hm+1−k(t), as required.

Theorem 4. Let T = {2431, 4132, 1432, 1324}. The generating function for T -avoiders is given
by

FT (t) =
C(t)

1− t3C5(t)
.

Proof. Let Gm(t) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(t) = 1 and G1(t) = tC(t).

Let us write an equation for Gm(t) with m ≥ 2. Let π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn(T )

with exactly m left-right maxima such that i1 < i2 < · · · < im = n. Since π avoids 1324, we
see that π(j) < i1 for all j = 1, 2, . . . ,m− 1. If π(m) < i1 then we have a contribution of Hm(t)

(as discussed in Lemma 2). Otherwise, π(m) has a letter between ij and ij+1 for 1 ≤ j ≤ m− 1.
Since π avoids T , we see that π(m) = α(ij + 1)(ij + 2) · · · (ij+1 − 1) with α < i1. Hence, by
Lemma 3, we have a contribution of Jm,j(t). Hence,

Gm(t) = Hm(t) +
t

1− t
Hm(t) +

m−1∑
j=2

tjCj−1(t)

1− t
Hm+1−j(t).

Thus, by summing over m ≥ 2, we have that∑
m≥2

Gm(t) =

(
1

1− t
+

t2C(t)

(1− t)(1− tC(t))

)∑
m≥2

Hm(t),

which implies

FT (t) = 1 + tC(t) +
1 + t2C2(t)

1− t
∑
m≥2

Hm(t).

On the other hand, by Lemma 2, we have∑
m≥2

Hm(t) =
t2(1 + tC(t)(C(t)− 1))

(1− t)2 − tC(t)
.

Hence, by after several algebraic operations with using the fact that C(t) = 1+ tC2(t), we obtain
that FT (t) =

C(t)
1−t3C5(t)

, as required.
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2.2 Case 3: T = {2143,2413,3241,3142}

Theorem 5. Let T = {2143, 2413, 3241, 3142}. The generating function for T -avoiders is given
by

FT (t) =
C(t)

1− t3C5(t)
.

Proof. Let Gm(t) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(t) = 1 and G1(t) = tFT (t).

Let us write an equation for Gm(t) for all m ≥ 2. Let π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn(T )

with exactly m left-right maxima such that i1 < i2 < · · · < im = n. If π(j) > i1 for all
j = 1, 2, . . . ,m (that is, i1 = 1), then we have a contribution of tGm−1(t). Otherwise, there
exists s, 1 ≤ s ≤ m, such that π(s) has a letter smaller than i1. Since π avoids 3241 and 3142,
we see that π(j) > i1 for all j = 1, 2, . . . , s − 1, s + 1, s + 2, . . . ,m. Since π avoids T , we see
that π(j) = ∅ for all j 6= s. Since π avoids 2413, we can write π(s) as α(s)α(s−1) · · ·α(1) such that
ij−1 < α(j) < ij for all j = 2, . . . , s and α(1) 6= ∅ such that α(1) < i1. Note that π avoids T
if and only if α(j) avoids 213 for all j = s, s − 1, . . . , 2 and α(1) avoids T . Also, the generating
function for the number of {213}-avoiders is given by C(t), see [7]. Thus, we have a contribution
of tmCs−1(t)(FT (t)− 1). Hence,

Gm(t) = tGm−1(t) + tm(FT (t)− 1)
m∑
s=1

Cs−1(t).

By summing over m ≥ 2, we obtain

FT (t)− 1− tFT (t) = t(FT (t)− 1) +
t2(FT (t)− 1)

(1− t)(1− C(t))
− t2C3(t)(FT (t)− 1)

1− C(t)
,

which, by using the fact that C(t) = 1 + tC2(t), leads to FT (t) =
C(t)

1−t3C5(t)
, as claimed.

2.3 Case 4: T = {2431,2314,2341,3142}

Theorem 6. Let T = {2431, 2314, 2341, 3142}. The generating function for T -avoiders is given
by

FT (t) =
C(t)

1− t3C5(t)
.

Proof. Let Gm(t) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(t) = 1 and G1(t) = tFT (t).

Let us write an equation forG2(t). Let π = iπ′nπ′′ ∈ Sn(T ) with exactly 2 left-right maxima.
If π′′ > i then π′ and π′′ must avoid 231 and T , respectively. So we have a contribution of
t2C(t)FT (t). Otherwise, π′′ has a letter smaller than i. By considering if π′′ < i (that is i = n−1)
or not, we obtain the contributions of t2

1−t(FT (t)− 1) and t2

1−t(C(t)− 1)(FT (t)− 1), respectively
(we used the fact that the generating function for the number of 231-avoiders is given by C(t),
see [7]). Hence,

G2(t) = t2C(t)FT (t) +
t2

1− t
(FT (t)− 1) +

t2

1− t
(C(t)− 1)(FT (t)− 1).
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Let us write an equation for Gm(t) for all m ≥ 3. Let π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn(T )

with exactly m left-right maxima such that i1 < i2 < · · · < im = n. Since π avoids 2314 and
2341, we see that π(j) > i1 for all j = 2, 3, . . . ,m. Thus, we have Gm(t) = tC(t)Gm−1(t). By
summing over m ≥ 3, we obtain

FT (t)− 1− tFT (t)−G2(t) = tC(t)(FT (t)− 1− tFT (t)),

which, by solving and using the fact that C(t) = 1 + tC2(t), implies that FT (t) =
C(t)

1−t3C5(t)
, as

claimed.

2.4 Case 5: T = {2431,2314,3241,3142}

Theorem 7. Let T = {2431, 2314, 3241, 3142}. The generating function for T -avoiders is given
by

FT (t) =
C(t)

1− t3C5(t)
.

Proof. Let Gm(t) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(t) = 1 and G1(t) = tFT (t).

Let us write an equation forG2(t). Let π = iπ′nπ′′ ∈ Sn(T ) with exactly 2 left-right maxima.
Since π avoids 2431 and 3142 we can write π as iπ′nαβ such that α < π′ < i < β. By
considering either α is empty or not (in this case π′ is empty), we have the contributions of
t2C(t)FT (t) and t2C(t)(FT (t)− 1), respectively. Hence,

G2(t) = t2C(t)FT (t) + t2C(t)(FT (t)− 1).

Let us write an equation for Gm(t) for all m ≥ 3. Let π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn(T )

with exactly m left-right maxima such that i1 < i2 < · · · < im = n. Since π avoids 2314,
we see that π(j) > i1 for all j = 2, 3, . . . ,m − 1. If π(m) > i1 then we have a contribution of
tC(t)Gm−1(t). Otherwise, π(m) has a letter smaller than i1, so, since π avoids T we can write π
as π = i1i2 · · · imαβ such that α < i1 < β < i2. By considering either β is empty or not, we
obtain the contributions tm(FT (t)− 1) and tm(C(t)− 1)(FT (t)− 1). Hence,

Gm(t) = tC(t)Gm−1(t) + tmC(t)(FT (t)− 1).

By summing over m ≥ 3, we obtain

FT (t)− 1− tFT (t)−G2(t) = tC(t)(FT (t)− 1− tFT (t)) +
t3

1− t
C(t)(FT (t)− 1),

which, by solving and using the fact that C(t) = 1 + tC2(t), implies that FT (t) =
C(t)

1−t3C5(t)
, as

claimed.

2.5 Case 6: T = {2143,1324,1342,1432}

Theorem 8. Let T = {2143, 1324, 1342, 1432}. The generating function for T -avoiders is given
by

FT (t) =
C(t)

1− t3C5(t)
.
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Proof. Let Gm(t) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(t) = 1 and G1(t) = tFT (t).

Let us write an equation forG2(t). Let π = iπ′nπ′′ ∈ Sn(T ) with exactly 2 left-right maxima.
If π′′ < i then we have a contribution of t(FT (t) − 1). Otherwise, π′′ has a letter greater than
i, so π′ = ∅ and π′′ includes the subsequence (i + 1)(i + 2) · · · (n − 1). Since π avoids T ,
then π′′(1)(i + 1)α(2)(i + 2) · · ·α(n−i−1)(n − 1)α(n−i) such that α(1) > α(2) > · · · > α(n−i−2) >

α(n−i−1) > α(n−i). Thus, we have a contribution of t2(FT (t)−1)
1−tC(t)

. Hence,

G2(t) = t(FT (t)− 1) +
t2(FT (t)− 1)

1− tC(t)
.

Let us write an equation for Gm(t) for all m ≥ 3. Let π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn(T )

with exactly m left-right maxima such that i1 < i2 < · · · < im = n. Since π avoids 2143, we see
that π(j) < i1 for all j = 1, 2, . . . ,m− 1. Since π avoids 1324 and 1342, we see that π(1) > π(j)

for all j = 2, 3, . . . ,m − 1 and π(m) has no letter between i1 and im−1. Hence, by case m = 2

and considering either π(1) empty or not, we have that

Gm(t) = tGm−1(t) + t(C(t)− 1)(tC(t))m−2t(FT (t)− 1).

By summing over m ≥ 3, we obtain

FT (t)− 1− tFT (t)−G2(t) = t(FT (t)− 1− tFT (t)) + +t(C(t)− 1)t(FT (t)− 1)/(1− tC(t)),

which, by solving and using the fact that C(t) = 1 + tC2(t), implies that FT (t) =
C(t)

1−t3C5(t)
, as

claimed.

2.6 Case 7: T = {2143,1324,1342,1243}

Theorem 9. Let T = {2143, 1324, 1342, 1243}. The generating function for T -avoiders is given
by

FT (t) =
C(t)

1− t3C5(t)
.

Proof. Let Gm(t) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(t) = 1 and G1(t) = tFT (t).

Let us write an equation forG2(t). Let π = iπ′nπ′′ ∈ Sn(T ) with exactly 2 left-right maxima.
If π′′ < i then we have a contribution of t(FT (t) − 1). Otherwise, π′′ has a letter greater than i,
so π′ = ∅, which implies a contribution of t(FT (t)− 1− tFT (t)). Hence,

G2(t) = t(FT (t)− 1) + t(FT (t)− 1− tFT (t)).

Let us write an equation for Gm(t) for all m ≥ 3. Let π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn(T )

with exactly m left-right maxima such that i1 < i2 < · · · < im = n. Since π avoids 1324, 1342
and 1243, we see that π(j) < i1 for all j = 1, 2, . . . ,m. Since π avoids 1324 and 1342, we
see that π(1) > π(2) > · · · > π(m−2) > π(m−1)π(m). Hence, by case m = 2, we have that
Gm(t) = (tC(t))m−2t(FT (t)− 1). By summing over m ≥ 3, we obtain

FT (t)− 1− tFT (t)−G2(t) = t2C(t)(FT (t)− 1)/(1− tC(t)),
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which, by solving and using the fact that C(t) = 1 + tC2(t), implies that FT (t) =
C(t)

1−t3C5(t)
, as

claimed.

2.7 Case 8: T = {1243,1324,1342,2134}

Lemma 10. For all 1 ≤ i ≤ n− 3,

a(n; i) = a(n− 1; i) +
i∑

j=1

a(n− 1; j)−
i∑

j=1

a(n− 2; j)−
i−1∑
j=1

a(j)

with a(n;n− 2) = a(n− 1)−
∑n−3

j=1 a(j) and a(n;n) = a(n;n− 1) = a(n− 1).

Proof. The initial conditions a(n;n) = a(n;n− 1) = a(n− 1) and a(n; i, n) = a(n− 1; i) with
1 ≤ i ≤ n − 1 easily follow from the definitions. For 1 ≤ j < i ≤ n − 2, since π avoids 2134,
we have

a(n; i, j) =

j−1∑
k=1

a(n; i, j, k) + a(n; i, j, n) =

j−1∑
k=1

a(n− 1; j, k) + a(n− 1; i, j).

Since π avoids 1324 and 1342, we have that a(n; i, j) = 0 for all 2 ≤ i + 1 < j ≤ n − 1. Since
π avoids T , we see that a(n; i, i + 1) = a(n; i, i + 1, i + 2, . . . , n − 1) = a(i). Therefore, for
1 ≤ j < i ≤ n− 2,

a(n; i, j) = a(n− 1; j)− a(n− 1; j, j + 1)− a(n− 1; j, n) + a(n− 1; i, j)

= a(n− 1; j)− a(j)− a(n− 2; j) + a(n− 1; i, j),

which, by summing over j = 1, 2, . . . , i− 1, implies

a(n; i)− a(n− 1; i)− a(i) =
i−1∑
j=1

a(n− 1; j)−
i−1∑
j=1

a(n− 2; j)−
i−1∑
j=1

a(j)

+ a(n− 1; i)− a(n− 2; i)− a(i).

Thus, for all i = 1, 2, . . . , n− 3,

a(n; i) = a(n− 1; i) +
i∑

j=1

a(n− 1; j)−
i∑

j=1

a(n− 2; j)−
i−1∑
j=1

a(j)

with

a(n;n− 2) = a(n− 1;n− 2) +
n−1∑
j=1

a(n− 1; j)−
n−2∑
j=1

a(n− 2; j)−
n−3∑
j=1

a(j)

= a(n− 1)−
n−3∑
j=1

a(j)

with a(n;n) = a(n;n− 1) = a(n− 1), as claimed.
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Theorem 11. Let T = {1243, 1324, 1342, 2134}. The generating function for T -avoiders is given
by

FT (t) =
C(t)

1− t3C5(t)
.

Proof. Define An(v) =
∑n

i=1 a(n; i)v
i−1. Then the recurrence in Lemma 10can be written as

An(v) = An−1(1)(v
n−1 + vn−2 + vn−3) + An−1(v)− An−2(1)(v

n−2 + vn−3)

+
An−1(v)− vn−2An−2(1)− vn−3(An−1(1)− An−2(1))

1− v

− An−2(v)− vn−3An−2(1)

1− v
−

n−2∑
j=1

vj − vn−2

1− v
a(j),

with initial conditions A0(v) = A1(v) = 1 and A2(v) = 1 + v.
Define A(t; v) =

∑
n≥0An(v)t

n. Hence,

A(t; v) = 1 + t+ (1 + v)t2 + t(1 + 1/v + 1/v2)(A(tv; 1)− 1− vt)
+ t(A(t; v)− 1− t)− t2(1 + 1/v)A(tv; 1)

+
t(A(t; v)− 1− t)− t2(A(tv; 1)− 1)− t

v2
(A(tv; 1)− 1− vt) + t2

v
(A(tv; 1)− 1)

1− v

−
t2(A(t; v)− 1)− t2

v
(A(tv; 1)− 1)

1− v

− t3

(1− t)(1− v)
(A(tv; 1)− 1) +

t3v

(1− vt)(1− v)
(A(tv; 1)− 1),

which is equivalent to

(t− v + v2)(t− v)
(1− v)v2

A(t/v; v)

=
t(−v4 + v(v3 + 2v2 + 1− v)t− (1 + 2v)(v2 − v + 1)t2 + (v2 − v + 1)t3)

v3(1− v)(v − t)(1− t)
A(t; 1)

+
−v4 + v3(v + 2)t− v(1 + v)(2v − 1)t2 + (v2 − 2v − 1)t3 + t4

v3(1− t)(t− v)
.

To solve the preceding functional equation, we apply the kernel method and take v = 1+
√
1−4t
2

=

1/C(t). Then after several algebraic operations with using C(t) = 1 + tC2(t), we obtain that
A(t; 1) = C(t)

1−t3C5(t)
, as claimed.

2.8 Case 9: T = {1234,1243,1342,2134}

Lemma 12. For all 1 ≤ i ≤ n− 3,

a(n; i) = a(n− 1; i) +
i∑

j=1

a(n− 1; j)−
i∑

j=1

a(n− 2; j)−
i−1∑
j=1

a(j)

with a(n;n− 2) = a(n− 1)−
∑n−3

j=1 a(j) and a(n;n) = a(n;n− 1) = a(n− 1).
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Proof. The initial conditions a(n;n) = a(n;n− 1) = a(n− 1) and a(n; i, n) = a(n− 1; i) with
1 ≤ i ≤ n − 1 easily follow from the definitions. For 1 ≤ j < i ≤ n − 2, since π avoids 2134,
we have

a(n; i, j) =

j−1∑
k=1

a(n; i, j, k) + a(n; i, j, n) =

j−1∑
k=1

a(n− 1; j, k) + a(n− 1; i, j).

Since π avoids 1234 and 1243, we have that a(n; i, j) = 0 for all 1 ≤ i < j ≤ n − 2. Since
π avoids 1342 and 1234, we see that a(n; i, n − 1) = a(n; i, n − 1, n − 2, . . . , i + 1) = a(i).
Therefore, for 1 ≤ j < i ≤ n− 2,

a(n; i, j) = a(n− 1; j)− a(n− 1; j, n− 1)− a(n− 1; j, n− 2) + a(n− 1; i, j),

which, by summing over j = 1, 2, . . . , i− 1, implies

a(n; i)− a(n− 1; i)− a(i) =
i−1∑
j=1

a(n− 1; j)−
i−1∑
j=1

a(n− 2; j)−
i−1∑
j=1

a(j)

+ a(n− 1; i)− a(n− 2; i)− a(i).

Thus, for all i = 1, 2, . . . , n− 3,

a(n; i) = a(n− 1; i) +
i∑

j=1

a(n− 1; j)−
i∑

j=1

a(n− 2; j)−
i−1∑
j=1

a(j),

a(n;n− 2) = a(n− 1;n− 2) +
n−1∑
j=1

a(n− 1; j)−
n−2∑
j=1

a(n− 2; j)−
n−3∑
j=1

a(j)

= a(n− 1)−
n−3∑
j=1

a(j)

with a(n;n) = a(n;n− 1) = a(n− 1), as required.

By Lemmas 10 and 12 with using Theorem 11, we have the following result.

Theorem 13. Let T = {1234, 1243, 1342, 2134}. The generating function for T -avoiders is given
by

FT (t) =
C(t)

1− t3C5(t)
.

2.9 Case 10: T = {3142,1342,2431,2341}

Theorem 14. Let T = {3142, 1342, 2431, 2341}. The generating function for T -avoiders is given
by

FT (t) =
C(t)

1− t3C5(t)
.
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Proof. Let Gm(t) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(t) = 1 and G1(t) = tFT (t).

Let us write an equation forG2(t). Let π = iπ′nπ′′ ∈ Sn(T ) with exactly 2 left-right maxima.
Since π avoids 3142 and 2431, we can write π as iπ′nαβ such that α < π′ < i < β. By
considering either α is empty or not, we get the contributions t2FT (t)C(t) and t2

1−tC(t)(C(t)−1),
respectively, where C(t) counts the 231-avoiders.

G2(t) = t2FT (t)C(t) +
t2

1− t
C(t)(C(t)− 1).

Let us write an equation for Gm(t) for all m ≥ 3. Let π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn(T )

with exactly m left-right maxima such that i1 < i2 < · · · < im = n. Since π avoids 1342 and
2341, we see that π(j) > ij−1 for all j = 3, 4, . . . ,m. So, π avoids T if and only if i1π(1)i2π

(2)

avoids T and π(j) avoids 231 for all j ≥ 3. Therefore,

Gm(t) = tm−2Cm−2(t)G2(t).

By summing over m ≥ 2, we obtain

FT (t)− 1− tFT (t) =
t2FT (t)C(t) +

t2

1−tC(t)(C(t)− 1)

1− tC(t)
= t2FT (t)C

2(t) +
t3

1− t
C4(t),

which, by using the fact that C(t) = 1 + tC2(t), leads to FT (t) =
C(t)

1−t3C5(t)
, as claimed.

2.10 Case 11: T = {2431,2413,2314,3241}

Theorem 15. Let T = {2431, 2413, 2314, 3241}. The generating function for T -avoiders is given
by

FT (t) =
C(t)

1− t3C5(t)
.

Proof. Let Gm(t) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(t) = 1 and G1(t) = tFT (t).

Let us write an equation forG2(t). Let π = iπ′nπ′′ ∈ Sn(T ) with exactly 2 left-right maxima.
If π′′ has a letter smaller than i, then π′ < π′′ such that π′ avoids 231 and π′′ avoids T . Thus, we
have a contribution of t2C(t)(FT (t)− 1). Otherwise, π′ < i < π′′, which implies a contribution
of t2C(t)FT (t). Hence,

G2(t) = t2FT (t)C(t) + t2C(t)(FT (t)− 1).

Let us write an equation for Gm(t) for all m ≥ 3. Let π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn(T )

with exactly m left-right maxima such that i1 < i2 < · · · < im = n. Since π avoids 2314, we
see that π(j) > ij−1 for all j = 2, 3, . . . ,m − 1. If π(m) > i1 then we have a contribution of
tC(t)Gm−1(t). Otherwise, π(m) contains a letter smaller than i1. Since π avoids 2431 and 2413,
then we see that π = i1π

(1)i2 · · · imπ(m) such that π(1) < π(m) < i1. Thus, we have a contribution
of tmC(t)(FT (t)− 1). Hence,

Gm(t) = tC(t)Gm−1(t) + tmC(t)(FT (t)− 1).
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By summing over m ≥ 3, we obtain

FT (t)− 1− tFT (t)−G2(t) = tC(t)(FT (t)− 1− tFT (t)) +
t3

1− t
C(t)(FT (t)− 1),

which, by using the fact that C(t) = 1 + tC2(t), leads to FT (t) =
C(t)

1−t3C5(t)
, as claimed.

2.11 Case 12: T = {1342,2341,2413,2431}

Theorem 16. Let T = {1342, 2341, 2413, 2431}. The generating function for T -avoiders is given
by

FT (t) =
C(t)

1− t3C5(t)
.

Proof. Let Gm(t) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(t) = 1 and G1(t) = tFT (t).

Let us write an equation forG2(t). Let π = iπ′nπ′′ ∈ Sn(T ) with exactly 2 left-right maxima.
If π′′ < i then we have a contribution of t(FT (t)− 1). Otherwise, since π avoids 2413 and 2431,
we have that π′′ > i. So π avoids T if and only if π′ avoids T and π′′ avoids 231. Thus, by [7],
the contribution is given by t2FT (t)(C(t)− 1). Hence,

G2(t) = t(FT (t)− 1) + t2FT (t)(C(t)− 1) = t(FT (t)− 1) + t3FT (t)C
2(t).

Let us write an equation for Gm(t) for all m ≥ 3. Let π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn(T )

with exactly m left-right maxima such that i1 < i2 < · · · < im = n. Since π avoids 1342 and
2341, we see that π(j) > ij−1 for all j = 3, 4, . . . ,m. So, π avoids T if and only if i1π(1)i2π

(2)

avoids T and π(j) avoids 231 for all j ≥ 3. Therefore,

Gm(t) = tm−2Cm−2(t)G2(t).

By summing over m ≥ 2, we obtain

FT (t)− 1− tFT (t) =
t(FT (t)− 1) + t3FT (t)C

2(t)

1− tC(t)
= t(FT (t)− 1)C(t) + t3FT (t)C

3(t),

which, by using the fact that C(t) = 1 + tC2(t), leads to FT (t) =
C(t)

1−t3C5(t)
, as claimed.

2.12 Case 13: T = {1324,1423,1432,2413}

Lemma 17. For all 1 ≤ i ≤ n− 2,

a(n; i) = a(n− 1; 1) + a(n− 1; 2) + · · ·+ a(n− 1; i) + a(i− 1)

with a(n;n) = a(n;n− 1) = a(n− 1).
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Proof. The initial conditions a(n;n) = a(n;n−1) = a(n−1) easily follow from the definitions.
For 1 ≤ i ≤ n− 2, we have

a(n; i) =
i−1∑
j=1

a(n; ij) + a(n; i(i+ 1)) + a(n; i(i+ 2)) +
n∑

j=i+3

a(n; ij).

So assume 1 ≤ j < i ≤ n − 2 and let π = ijπ′ be a member of Sn(T ). If π avoids T then jπ′

avoids T . Let π contains T and jπ′ avoids T , so there is an occurrence iabc of 2413 in π such
that b < i < a < c. If b < j then jπ′ contains 2413, otherwise b > j and jπ′ contains 1423, a
contradiction. Thus, π avoids T if and only if jπ′ avoids T , which implies a(n; ij) = a(n− 1; j).

Let π = i(i + 1)π′ be a member of Sn(T ), here π avoids T if and only if iπ′ avoids T , so
a(n; i(i+ 1)) = a(n− 1; i).

Let π = i(i+2)π′ be a member of Sn(T ), then π can be written as i(i+2)α(i+1)β. Since π
avoids T , we see that π = i(i+ 2)(i+ 3) · · ·n(i+ 1)β. Thus, π avoids T if and only if β avoids
T , which implies that a(n; i(i+ 2)) = a(i− 1).

So assume 3 ≤ i + 2 < j ≤ n and let π = ijπ′ be a member of Sn(T ), then π contains
ij(i+ 1)(i+ 2) or ij(i+ 2)(i+ 1), which leads to a(n; ij) = 0.

Hence, a(n; i) = a(n−1; 1)+a(n−1; 2)+· · ·+a(n−1; i)+a(i−1) for all i = 1, 2, . . . , n−2,
as claimed.

Theorem 18. Let T = {1324, 1423, 1432, 2413}. The generating function for T -avoiders is given
by

FT (t) =
C(t)

1− t3C5(t)
.

Proof. Define An(v) =
∑n

i=1 a(n; i)v
i−1. Lemma 17 gives

An(v)− (vn−1 + vn−2)An−1(1) =
1

1− v
(An−1(v)− vn−2An−1(1)) +

n−3∑
j=0

vjAj(1),

which is equivalent to

An(v) =
1

1− v
(An−1(v)− vnAn−1(1)) +

n−3∑
j=0

vjAj(1).

Here, we can use the initial conditions A0(v) = A1(v) = 1.
Define A(t; v) =

∑
n≥0An(v)t

n. The above recurrence relation can be written as

A(t; v) = 1 +
t

1− v
(A(t; v)− vA(vt; 1) + t3

1− t
A(vt; 1),

which is equivalent to(
1− t

v(1− v)

)
A(t/v; v) = 1 +

(
t3

v2(v − t)
− t

1− v

)
A(t; 1).

To solve the preceding functional equation, we apply the kernel method and take v = 1+
√
1−4t
2

=

1/C(t). Then A(t; 1) = C(t)
1−t3C5(t)

, as claimed.
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2.13 Case 14: T = {1324,1342,1423,2413}

Lemma 19. For all 1 ≤ i ≤ n− 2,

a(n; i) = a(n− 1; 1) + a(n− 1; 2) + · · ·+ a(n− 1; i) + a(i− 1)

with a(n;n) = a(n;n− 1) = a(n− 1).

Proof. The initial conditions a(n;n) = a(n;n−1) = a(n−1) easily follow from the definitions.
For 1 ≤ i ≤ n− 2, we have

a(n; i) =
i−1∑
j=1

a(n; ij) + a(n; i(i+ 1)) +
n−1∑

j=i+2

a(n; ij) + a(n; in).

So assume i + 1 < j < n and let π = ijπ′ be a member of Sn(T ), then π contains 1324 or
1342, which leads to a(n; ij) = 0. Moreover, the case a(n; i (i+ 1)) = a(n − 1; i) since at the
beginning we have no increasingly consecutive pattern in T .

So assume 1 ≤ j < i ≤ n − 2 and let π = ijπ′ be a member of Sn(T ). The following
statement holds: π avoids T if and only if jπ′ avoids T . Necessary part is clear. Assume that π
contains T and jπ′ avoids T , so there is an occurrence iabc of 2413 in π such that b < i < c < a.
If b < j then jπ′ contains 2413, otherwise b > j and jabc is the pattern 1423, a contradiction.
Thus a(n; ij) = a(n− 1; j).

Let π = inπ′ be a member of Sn(T ), since π avoids 1423, we have that π contains the
subsequence in (n− 1) (n− 2) · · · (i+ 1). Since π avoids 2413, π must be written as π =

in (n− 1) · · · (i+ 1) π′′, which implies a(n; in) = a(i− 1).
Hence, a(n; i) = a(n− 1; 1) + a(n− 1; 2) + · · ·+ a(n− 1; i) + a(i− 1), as claimed.

By Lemmas 17 and 19 with using Theorem 18, we obtain the following result.

Theorem 20. Let T = {1324, 1342, 1423, 2413}. The generating function for T -avoiders is given
by

FT (t) =
C(t)

1− t3C5(t)
.

2.14 Case 15: T = {1243,1324,1423,2314}

Lemma 21. Let b(n; i) = a(n; in). For all 1 ≤ i ≤ n− 2,

a(n; i) =
i∑

j=1

a(n− 1; j)−
i−1∑
j=1

a(n− 2; j) + b(n; i)

with a(n;n) = a(n;n− 1) = a(n− 1), where for all 1 ≤ i ≤ n− 3,

b(n; i) = b(n− 1; 1) + · · ·+ b(n− 1; i)

with b(n;n− 1) = b(n;n− 2) = a(n− 2) and b (n;n) = 0.
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Proof. The initial conditions a(n;n) = a(n;n− 1) = a(n− 1), b(n;n− 1) = a(n; (n− 1)n) =

a(n−2), b(n;n−2) = a(n; (n−2)n) = a(n−2) and b (n;n) = 0 easily follow. For 1 ≤ i ≤ n−2,
we have

a(n; i) =
i−1∑
j=1

a(n; ij) +
n−1∑

j=i+1

a(n; ij) + a(n; in).

So assume 1 ≤ j < i ≤ n− 2 and let π = ijπ′ be a member of Sn(T ). If π avoids T then clearly
jπ′ avoids T . Let’s assume that π contains T and jπ′ avoids T , so there is an occurrence iabc of
2314 in π such that b < i < a < c. If b < j then jabc is the pattern 2314, otherwise b > j and
jπ′ contains 1324, a contradiction. Thus, π avoids T if and only if jπ′ avoids T , which implies
a(n; ij) = a(n− 1; j).

For 1 ≤ i < j ≤ n − 1, let π = ijπ′ be a member of Sn(T ). Since 1243 ∈ T , π contains
the subsequence ij(j + 1) · · ·n. Since π avoids 2314, 1324 and j 6= n, we have that n is located
(n− j + 2)th position in the permutation π. Let π′′ be the permutation which is obtained by delet-
ing the element n in the permutation π. Obviously if π avoids T then π′′ avoids T. Conversely,
assume that π′′ avoids T but π contains T . So there is an occurrence inab of 1423 should be in π.
i (n− 1) ab in π′′ is the pattern 1423, a contradiction. We have that π avoids T if and only if π′′

avoids T . Hence a(n; ij) = a(n− 1; ij). Thus,

a(n; i) =
i−1∑
j=1

a(n− 1; j) +
n−1∑

j=i+1

a(n− 1; ij) + b(n; i)

=
i−1∑
j=1

a(n− 1; j) + a(n− 1; i)−
i−1∑
j=1

a(n− 1; ij) + b(n; i)

=
i∑

j=1

a(n− 1; j)−
i−1∑
j=1

a(n− 2; j) + b(n; i).

Now let π = inπ′ ∈ Sn(T ) with 1 ≤ i ≤ n − 3. Since π avoids 1423, we can write π as
π = injπ′′ with either j = n − 1 or j ≤ i − 1. Note that in(n − 1)π′′ belongs to Sn(T ) if and
only if i(n − 1)π′′ belongs to Sn−1(T ). Moreover, if j ≤ i − 1 then π = injπ′′ ∈ Sn(T ) if and
only if j(n− 1)π′′′ avoids T, where π′′′ is obtained by decreasing the element greater then i by 1.
Hence,

b(n; i) =
i∑

j=1

b(n− 1; j),

with b(n;n− 1) = b(n;n− 2) = a(n− 2) and b (n;n) = 0, which completes the proof.

Theorem 22. Let T = {1243, 1324, 1423, 2314}. The generating function for T -avoiders is given
by

FT (t) =
C(t)

1− t3C5(t)
.
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Proof. Define An(v) =
∑n

i=1 a(n; i)v
i−1 and Bn(v) =

∑n−1
i=1 b(n; i)v

i−1. Lemma 21 gives

An(v) =
1

1− v
(An−1(v)− vnAn−1(1))−

1

1− v
(vAn−2(v)− vn−1An−2(1)) +Bn(v),

Bn(v) =
1

1− v
(Bn−1(v)− vn−3Bn−1(1)) + (vn−2 + vn−3)An−2(1)

with A0(v) = A1(v) = B2(v) = 1, B0(v) = B1(v) = 0 and A2(v) = 1 + v.
DefineA(t; v) =

∑
n≥0An(v)t

n andB(t; v) =
∑

n≥0Bn(v)t
n. The above recurrence relation

can be written as

A(t; v) = 1− t2 + t

1− v
(A(t; v)− vA(vt; 1))− vt2

1− v
(A(t; v)− A(vt; 1)) +B(t; v),

B(t; v) =
t

1− v
(B(t; v)−B(vt; 1)/v2) + t2A(vt; 1) + t2(A(vt; 1)− 1)/v,

which is equivalent to(
1− t(1− t)

v(1− v)

)
A(t/v; v)−B(t/v; v) = 1− t2

v2
− t(v − t)
v(1− v)

A(t; 1), (1)(
1− t

v(1− v)

)
B(t/v; v) = − t

v3(1− v)
B(t; 1) +

t2(v + 1)

v3
A(t; 1)− t2

v3
. (2)

To solve (2), we apply the kernel method and take v = 1+
√
1−4t
2

= 1/C(t). Then

B(t; 1) = t2(1 + C(t))A(t; 1)− t2C(t). (3)

By multiplying (1) by 1− t
v(1−v) and then using (2) and (3), we obtain(

1− t

v(1− v)

)(
1− t(1− t)

v(1− v)

)
A(t/v; v)

= − t

v3(1− v)
(
t2(1 + C(t))A(t; 1)− t2C(t)

)
+
t2(v + 1)

v3
A(t; 1)− t2

v3

+

(
1− t

v(1− v)

)(
1− t2

v2
− t(v − t)
v(1− v)

A(t; 1)

)
.

To solve the preceding functional equation, we apply the kernel method and take v = 1− t. Then

(1− tC2(t) + t2C2(t))A(t, 1) = (1− tC(t))C(t),

which, by C(t) = 1 + tC2(t), completes the proof.

2.15 Case 16: T = {1243,1324,1342,2314}

Lemma 23. For all 1 ≤ i ≤ n− 2,

a(n; i) = a(n− 1; 1) + a(n− 1; 2) + · · ·+ a(n− 1; i) + a(i− 1)

with a(n;n) = a(n;n− 1) = a(n− 1).
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Proof. The initial conditions a(n;n) = a(n;n−1) = a(n−1) easily follow from the definitions.
For 1 ≤ i ≤ n− 2, we have

a(n; i) =
i−1∑
j=1

a(n; ij) + a(n; i(i+ 1)) +
n−1∑

j=i+2

a(n; ij) + a(n; in).

So assume 1 ≤ j < i ≤ n − 2 and let π = ijπ′ be a member of Sn(T ). If π avoids T then jπ′

avoids T . Let π contains T and jπ′ avoids T , so there is an occurrence iabc of 2314 in π such
that b < i < a < c. If c < j then jπ′ contains 2314, otherwise b > j and jπ′ contains 1324, a
contradiction. Thus, π avoids T if and only if jπ′ avoids T , which implies a(n; ij) = a(n− 1; j).

Let π = i(i + 1)π′ be a member of Sn(T ), since π avoids 1243, we have that π contains the
subsequence i(i + 1)(i + 2) · · ·n. Since π avoids 2314, we can write π as π = i(i + 1) · · ·nπ′′.
Therefore, a(n; i(i+ 1)) = a(i− 1).

So assume 1 ≤ i < j ≤ n − 1 and let π = ijπ′ be a member of Sn(T ), then π contains
ij(i + 1)n or ijn(i + 1), which leads to a(n; ij) = 0. Moreover, the case a(n; in) = a(n− 1; i)

easily follow from the definitions (by removing the letter n). Hence, a(n; i) = a(n−1; 1)+a(n−
1; 2) + · · ·+ a(n− 1; i) + a(i− 1), as claimed.

By Lemmas 17 and 23 with using Theorem 18, we obtain the following result.

Theorem 24. Let T = {1243, 1324, 1342, 2314}. The generating function for T -avoiders is given
by

FT (t) =
C(t)

1− t3C5(t)
.

2.16 Case 17: T = {1234,1324,1342,2314}

Lemma 25. For all 1 ≤ i ≤ n− 2,

a(n; i) = a(n− 1; 1) + a(n− 1; 2) + · · ·+ a(n− 1; i) + a(i− 1)

with initials a(n;n) = a(n;n− 1) = a(n− 1).

Proof. The initials could be easily seen. For 1 ≤ i ≤ n− 2, we have

a(n; i) =
i−1∑
j=1

a(n; ij) + a(n; i(i+ 1)) +
n−1∑

j=i+2

a(n; ij) + a(n; in).

The case a(n; in) = a(n − 1; i) easily follow from the definitions. For i + 1 < j ≤ n − 1,

the permutation π = ijπ′ includes either ij (i+ 1)n or ijn (i+ 1) as a subsequence. Hence
a(n; ij) = 0.

Let π = i (i+ 1) π′ be a permutation avoids the pattern set T . Since 1234 ∈ T, π con-
tains the subsequence i (i+ 1)n (n− 1) · · · (i+ 2) . Let j < i. Since π avoids the pattern
2314, cannot be located before the element greater than i + 1. Thus π must be written π =

i (i+ 1)n (n− 1) · · · (i+ 2) π′′, which leads to a(n; i(i+ 1)) = a (i− 1) .
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So assume 1 ≤ j < i ≤ n − 2 and let π = ijπ′ ∈ Sn (T ). It is clear that jπ′ ∈ Sn−1 (T ) .

Now assume that jπ′ ∈ Sn−1 (T ) but π = ijπ′ 6∈ Sn (T ). So π contains the pattern 2314. Let
iabc be this pattern. We have b < i < a < c. If j > b then jabc is the pattern 2314, otherwise
j < b then jπ′ contains 1324. There is a contradiciton with jπ′ ∈ Sn−1 (T ). Finally we obtain
π = ijπ′ ∈ Sn (T ) if and only if jπ′ ∈ Sn−1 (T ) , which gives a(n; ij) = a(n − 1; j). So the
proof is completed.

By Lemmas 17 and 25 with using Theorem 18, we obtain the following result.

Theorem 26. Let T = {1234, 1324, 1342, 2314}. The generating function for T -avoiders is given
by

FT (t) =
C(t)

1− t3C5(t)
.

2.17 Case 18: T = {1342,2341,3241,3421}

Theorem 27. Let T = {1342, 2341, 3241, 3421}. The generating function for T -avoiders is given
by

FT (t) =
C(t)

1− t3C5(t)
.

Proof. Let Gm(t) be the generating function for T -avoiders with m left-right maxima. Clearly,
G0(t) = 1 and G1(t) = tFT (t).

Let us write an equation forG2(x). Let π = iπ′nπ′′ ∈ Sn(T ) with exactly 2 left-right maxima.
Since π avoids 3421, we see that all the letters that are smaller than i belongs to π′′ are increasing.
Since π avoids 3241, we obtain that π contains the subsequence (i− d)(i− d+1) · · · (i− 1) and
π′ < i− d. Since π avoids 2341 an 1342, we see that π′′ can be written as

π′′ = p1p2 · · · ps1(i− d)ps1+1ps1+2 · · · ps2(i− d+ 1)

· · · psd+1psd+2 · · · psd+1
(i− 1)α(sd+1+1)α(sd+1) · · ·α(1)

such that pj−1 > pj and α(j+1) < pj < α(j) for all j = 1, 2, . . . , sd+1. Note that π avoids T if and
only if α(j) avoids 231 for all j and π′ avoids T . Therefore, we have a contribution of

t2+dC(t)FT (t)

(1− tC(t))d
= t2+dCd+1(t)FT (t),

for fixed d. Hence,
G2(t) =

∑
d≥0

t2+dCd+1(t)FT (t) = t2C2(t)FT (t).

Let us write an equation for Gm(t) for all m ≥ 3. Let π = i1π
(1)i2π

(2) · · · imπ(m) ∈ Sn(T )

with exactly m left-right maxima such that i1 < i2 < · · · < im = n. Since π avoids 2341 and
1342, we see that π(j) > ij−1 for all j = 2, 3, . . . ,m. So, π avoids T if and only if i1π(1)i2π

(2)

avoids T , and π(j) avoids 231 for all j = 3, 4, . . . ,m. Hence,

Gm(t) = tm−2G2(t)C
m−2(t).
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By summing over m ≥ 2, we obtain

FT (t)− 1− tFT (t) =
∑
m≥2

tm−2G2(t)C
m−2(t) = G2(t)C(t) = t2C3(t)FT (t),

which, by using the fact that C(t) = 1 + tC2(t), leads to FT (t) =
C(t)

1−t3C5(t)
, as claimed.

2.18 Case 19: T = {1243,1342,1423,2341}

Lemma 28. Let b(n; i) = a(n; in). For all 1 ≤ i ≤ n− 2,

a(n; i) =
i∑

j=1

a(n− 1; j)−
i−1∑
j=1

a(n− 2; j) + b(n; i)

with a(n;n) = a(n;n− 1) = a(n− 1), where for all 1 ≤ i ≤ n− 3,

b(n; i) = b(n− 1; 1) + · · ·+ b(n− 1; i)

with b(n;n− 1) = b(n;n− 2) = a(n− 2).

Proof. The initial conditions a(n;n) = a(n;n− 1) = a(n− 1), b(n;n− 1) = a(n; (n− 1)n) =

a(n − 2) and b(n;n − 2) = a(n; (n − 2)n) = a(n − 2) easily follow from the definitions. For
1 ≤ i ≤ n− 2, we have

a(n; i) =
i−1∑
j=1

a(n; ij) +
n−1∑

j=i+1

a(n; ij) + a(n; in).

So assume 1 ≤ j < i ≤ n and let π = ijπ′ be a member of Sn(T ). If π avoids T then jπ′

avoids T . Let π contains T and jπ′ avoids T , so there is an occurrence iabc of 2341 in π such
that c < i < a < b. If c < j then jπ′ contains 2341, otherwise c > j and jπ′ contains 1342, a
contradiction. Thus, π avoids T if and only if jπ′ avoids T , which implies a(n; ij) = a(n− 1; j).
Let π = ijπ′ be a member of Sn(T ) such that 1 ≤ i < j ≤ n− 1, since π avoids 1243, we have
that π contains the subsequence ij(j +1) · · ·n. Since π avoids 2341 and j ≤ n− 1, we have that
n is the rightmost letter of π, so, a(n; ij) = a(n− 1; ij). Thus,

a(n; i) =
i−1∑
j=1

a(n− 1; j) +
n−1∑

j=i+1

a(n− 1; ij) + b(n; i)

=
i−1∑
j=1

a(n− 1; j) + a(n− 1; i)−
i−1∑
j=1

a(n− 1; ij) + b(n; i)

=
i∑

j=1

a(n− 1; j)−
i−1∑
j=1

a(n− 2; j) + b(n; i).

Now let π = inπ′ ∈ Sn(T ) with 1 ≤ i ≤ n − 3. Since π avoids 1423, we can write π as
π = injπ′′ with either j = n−1 or j ≤ i−1. Note that in(n−1)π′′ belongs to Sn(T ) if and only
if i(n− 1)π′′ belongs to Sn−1(T ). Moreover, if j ≤ i− 1 then π = injπ′′ ∈ Sn(T ) if and only if
j(n− 1)π′′ avoids T (π contains the subsequence j(n− 1)(n− 2) · · · (i+ 1)(i− 1) · · · (j + 1)).
Hence, b(n; i) =

∑i
j=1 b(n− 1; j) with b(n;n− 1) = b(n;n− 2) = a(n− 2), which completes

the proof.
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By Lemmas 21 and 28 with using Theorem 22, we obtain the following result.

Theorem 29. Let T = {1243, 1342, 1423, 2341}. The generating function for T -avoiders is given
by

FT (t) =
C(t)

1− t3C5(t)
.

Moreover, we have the following result for all pattern sets Aj , where j = 1, 2, ..., 19.

Theorem 30. The number of Aj-avoiders of size n, where j = 1, 2, ..., 19. is given by

a(n) =

n/3∑
`=0

5`+ 1

n+ 2`+ 1

(
2n− `
n+ 2`

)
.

Proof. By [13, Eq. 2.5.16], we can see that

C(t)

1− t3C5(t)
=
∑
`≥0

t3`C`+1(t) =
∑
`≥0

∑
j≥0

(5`+ 1)(2j + 5`)!

j!(j + 5`+ 1)!
tj+3`,

which completes the proof.
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