Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 23, 2017, No. 3, 73–78

On quasiperfect numbers

V. Siva Rama Prasad¹ and C. Sunitha²

¹ Nalla Malla Reddy Engineering College, Divyanagar Ghatakesar Mandal, Ranga Reddy District, Telangana-501301, India e-mail: vangalasrp@yahoo.co.in

² Department of Mathematics and Statistics, RBVRR Women's College Narayanaguda, Hyderabad, Telangana-500027, India e-mail: csunithareddy1974@gmail.com

Received: 20 November 2016

Accepted: 28 April 2017

Abstract: A natural number N is said to be *quasiperfect* if $\sigma(N) = 2N + 1$ where $\sigma(N)$ is the sum of the positive divisors of N. No quasiperfect number is known. If a quasiperfect number N exists and if $\omega(N)$ is the number of distinct prime factors of N then G. L. Cohen has proved $\omega(N) \ge 7$ while H. L. Abbott et al. have shown $\omega(N) \ge 10$ if (N, 15) = 1. In this paper we first prove that every quasiperfect numbers N has an odd number of *special factors* (see Definition 2.3 below) and use it to show that $\omega(N) \ge 15$ if (N, 15) = 1 which refines the result of Abbott et al. Also we provide an alternate proof of Cohen's result when (N, 15) = 5. Keywords: Quasiperfect number, Special factor.

AMS Classification: 11A25.

1 Introduction

For any natural number N, let $\sigma(N)$ denote the sum of its positive divisors. A number N is called *abundant, perfect* or *deficient* if $\sigma(N) > 2N$, $\sigma(N) = 2N$ or $\sigma(N) < 2N$ respectively. It is well known that there are infinitely many abundant numbers and infinitely many deficient numbers. In [7] Sierpinski asks whether there is at least one abundant number satisfying

$$\sigma(N) = 2N + 1, \tag{1.1}$$

for which there is no definite answer till date. P. Cattaneo [2] called any N satisfying (1.1) *quasiperfect*, and initiated a study of such numbers. Later H. L. Abbott, C. E. Aull, Ezra Brown

and D. Suryanarayana [1] continued investigations on quasiperfect numbers and proved the following: If a quasiperfect number N exists and if $\omega(N)$ is the number of distinct prime factors of N, then

$$\omega(N) \ge 5$$
 ([1], Theorem 2) (1.2)

and

$$\omega(N) \ge 10 \text{ if } (N, 15) = 1 \quad ([1], \text{ Theorem 5})$$
 (1.3)

M. Kishore [5] improved (1.2) to $\omega(N) \ge 6$ while G. L. Cohen and Peter Hagis Jr. [3] have obtained a refinement to it as

$$\omega(N) \ge 7 \tag{1.4}$$

Further details of research on quasiperfect numbers can be seen in the book by J. Sándor and B. Crstici ([6], pp. 38–39).

In this paper we first prove that if a quasiperfect number N exists then it has an odd number of *special factors* (defined in Section 2) and use it to refine (1.3) as

$$\omega(N) \ge 15 \text{ if } (N, 15) = 1 \tag{1.5}$$

and also provide an alternate proof of (1.4) in case (N, 15) = 5.

2 **Preliminaries**

P. Cattaneo [2] has proved the following:

Theorem 2.1. If N is a quasiperfect number then it is of the form

 $N = p_1^{2e_1} p_2^{2e_2} \dots p_t^{2e_t}$, where p_i are distinct odd primes. Also $e_i \equiv 0$ or $1 \pmod{4}$ if $p_i \equiv 1 \pmod{8}$; $e_i \equiv 0 \pmod{2}$ if $p_i \equiv 3 \pmod{8}$; $e_i \equiv 0$ or $-1 \pmod{4}$ if $p_i \equiv 5 \pmod{8}$ and $e_i \geq 1$ if $p_i \equiv 7 \pmod{8}$. Further if M is a natural number for which $\sigma(M) \geq 2M$ then no non-trivial multiple of M is quasiperfect.

Remark 2.2. It follows from the theorem that every quasiperfect number is the square of an odd integer while the last part of it shows that every quasiperfect number is *primitive abundant*, in the sense that it is an abundant number having no non-deficient number as a divisor.

In the canonical representation of a quasiperfect number each factor is of the form $p_i^{2e_i}$ where p_i is an odd prime, of which we consider the following special type of factors.

Definition 2.3. If p is an odd prime and $e \ge 1$ is an integer such that either $p \equiv 1 \pmod{8}$ and $e \equiv 1 \pmod{4}$ or $p \equiv 5 \pmod{8}$ and $e \equiv -1 \pmod{4}$ then p^{2e} will be called a *special factor*.

For example, 5^6 , 17^{10} and 13^{14} are special factors. Precisely the set of all special factors is given by $S = \{p^{2e} : [p \equiv 1 \pmod{8}, e \equiv 1 \pmod{4}] or [p \equiv 5 \pmod{8}, e \equiv -1 \pmod{4}] \}.$

Observe that 5^4 , 17^8 and 13^{16} are not special factors. Also if 3 divides a quasiperfect number then 3^{2e} is among its non-special factors; while if 5^{2e} is a factor of N then it is a special factor or a non-special factor according as $e \equiv 1 \pmod{4}$ or $e \equiv 0 \pmod{4}$. Further any factor p^{2e} of a quasiperfect number N is either a special factor or a non-special factor but not both.

3 Main results

First we prove the following

Definition 3.1. If a quasiperfect number N exists, then it has an odd number of special factors.

Proof. Suppose N is a quasiperfect number of the form

$$N = p_1^{2e_1} p_2^{2e_2} \dots p_t^{2e_t}$$
, where p_i are odd primes. (3.2)

Then $p_i^2 \equiv 1 \pmod{8}$ for $1 \le i \le t$. Therefore

$$2N + 1 = 2.(p_1^2)^{e_1}(p_2^2)^{e_2}...(p_t^2)^{e_t} + 1 \equiv 2.1 + 1 \pmod{8} \equiv 3 \pmod{8}.$$
 (3.3)

Also for any *i*,

$$\begin{aligned} \sigma(p_i^{2e_i}) &= 1 + p_i + p_i^2 + \dots + p_i^{2e_i} \\ &= (1 + p_i) + p_i^2 (1 + p_i) + \dots + p_i^{2(e_i - 1)} (1 + p_i) + p_i^{2e_i} \\ &= (1 + p_i) (1 + p_i^2 + \dots + p_i^{2(e_i - 1)}) + p_i^{2e_i} \\ &\equiv (1 + p_i) e_i + 1 \pmod{8} \end{aligned}$$

so that

$$\sigma(p_i^{2e_i}) \equiv \begin{cases} 3 \pmod{8} & \text{if } p_i^{2e_i} \text{ is a special factor} \\ 1 \pmod{8} & \text{otherwise} \end{cases}$$
(3.4)

For example, if $p_i \equiv 5 \pmod{8}$ and $e_i \equiv 3 \pmod{4}$, say $p_i = 8u_i + 5$ and $e_i = 4v_i + 3$ then $(1 + p_i)e_i + 1 = (8u_i + 6)(4v_i + 3) + 1 \equiv 3 \pmod{8}$. Also if $p_i \equiv 3 \pmod{8}$ and $e_i \equiv 0 \pmod{2}$ then $(1 + p_i)e_i + 1 = (8u'_i + 4)(2v'_i) + 1 \equiv 1 \pmod{8}$. Hence

$$\sigma(N) = \prod_{i=1}^{t} \sigma(p_i^{2e_i}) \equiv 3^k \pmod{8}, \tag{3.5}$$

where k is the number of special factors of N.

Now (3.3) and (3.5) give $3^k \equiv 3 \pmod{8}$, which holds only if k is odd, thus proving the theorem.

Remark 3.6. If N is a quasiperfect number of the form (3.2) then it follows from the theorem that not all e_i can be even showing that N cannot be the fourth power of a natural number. That is, no number of the form m^4 is quasiperfect. This result has been proved in [3] by a slightly different method.

Using Theorem 3.1 we now improve (1.3) as below:

Theorem 3.7. If N is a quasiperfect number with (N, 15) = 1 then

$$\omega(N) \ge 15.$$

Proof. Suppose N is the square of an odd integer of the form

$$N = \prod_{i=1}^{s} P_i^{2e_i} \cdot \prod_{i=1}^{r} Q_j^{2f_j},$$
(3.8)

where $P_i^{2e_i}$ are special factors, $Q_j^{2f_j}$ are non-special factors,

$$(P_i, Q_j) = 1, P_1 < P_2 < \dots < P_s \text{ and } Q_1 < Q_2 < \dots < Q_r.$$

It is easy to see that

$$\frac{\sigma(N)}{N} = \prod_{i=1}^{s} \frac{\sigma(P_i^{2e_i})}{P_i^{2e_i}} \cdot \prod_{i=1}^{r} \frac{\sigma(Q_j^{2f_j})}{Q_j^{2f_j}} < \pi^* \cdot \pi^{**}$$
(3.9)

where $\pi^* = \prod_{i=1}^s \frac{P_i}{P_i - 1}$ and $\pi^{**} = \prod_{j=1}^r \frac{Q_j}{Q_j - 1}$

Now we introduce a notation: For any integer $k \ge 1$, if the k-tuples (a_1, a_2, \ldots, a_k) and (b_1, b_2, \ldots, b_k) of primes are such that $a_i \ge b_i$ for $i = 1, 2, \ldots, k$ then we write $(a_1, a_2, \ldots, a_k) \ge (b_1, b_2, \ldots, b_k)$. Clearly

$$\prod_{i=1}^{k} \frac{a_i}{a_i - 1} \le \prod_{i=1}^{k} \frac{b_i}{b_i - 1} \text{ if } (a_1, a_2, \dots, a_k) \ge (b_1, b_2, \dots, b_k),$$
(3.10)

since $\frac{x}{x-1}$ is a decreasing function for x > 1.

If N is of the form (3.8) with (N, 15) = 1, s odd and $\omega(N) \le 14$ then we will prove that N is deficient and hence cannot be quasiperfect, so that the theorem follows.

It is enough to prove in the case $\omega(N) = 14$. That is, s + r = 14, with s odd and (N, 15) = 1. The set E of ordered pairs (s, r) of positive integers with the above properties is given by $E = \{(1, 13), (3, 11), (5, 9), (7, 7), (9, 5), (11, 3), (13, 1)\}$. For each $(s, r) \in E$, the primes dividing N is a 14-tuple of the form $(P_1, P_2, \ldots, P_s, Q_1, Q_2, \ldots, Q_r)$ and we can find a 14-tuple of distinct primes $(p_1, p_2, \ldots, p_{14})$ such that

$$(P_1, P_2, \ldots, P_s, Q_1, Q_2, \ldots, Q_r) \ge (p_1, p_2, \ldots, p_{14}),$$

where $p_i \equiv 1 \text{ or } 5 \pmod{8}$ for i = 1, 2, ..., s and p_j is any prime for j = s + 1, ..., 14. Then, by (3.10)

$$\pi^* \cdot \pi^{**} \le \prod_{k=1}^{14} \frac{p_k}{p_k - 1}.$$
(3.11)

Table A below gives the 14-tuple $(p_1, p_2, \ldots, p_{14})$ for each $(s, r) \in E$ and the corresponding value of $\prod_{k=1}^{14} \frac{p_k}{p_k - 1}$. Here each $p_i \ge 7$ since (N, 15) = 1. As each entry in the last column is less than 2, it follows from (3.9) and (3.11) that N is deficient. Thus $\omega(N) \le 14$ is not possible for any quasiperfect number N with (N, 15) = 1, proving $\omega(N) \ge 15$.

Ι	II	III
(s,r)	(p_1,p_2,\ldots,p_{14})	$\prod_{k=1}^{14} \frac{p_k}{p_k - 1}$
(1,13)	(13,7,11,17,19,23,29,31,37,41,43,47,53,59)	1.99331532
(3,11)	(13, 17, 29, 7, 11, 19, 23, 31, 37, 41, 43, 47, 53, 59)	1.99331532
(5,9)	(13, 17, 29, 37, 41, 7, 11, 19, 23, 31, 43, 47, 53, 59)	1.99331532
(7,7)	(13,17,29,37,41,53,61,7,11,19,23,31,43,47)	1.99218916
(9,5)	(13,17,29,37,41,53,61,73,89,7,11,19,23,31)	1.95285089
(11,3)	(13,17, 29,37,41,53,61,73,89,97,101,7,11,19)	1.84478333
(13,1)	(13,17,29,37,41,53,61,73,89,97,101,109,113,7)	1.61783693

Table A

Theorem 3.12. If N is a quasiperfect number with (N, 15) = 5 then

$$\omega(N) \ge 7$$

Proof. Suppose N is the square of an odd integer of the form (3.8) with (N, 15) = 5, s odd and $\omega(N) \le 6$. We will show, as in the proof of Theorem 3.1, that N is deficient and hence cannot be quasiperfect. As before it suffices to prove the case $\omega(N) = 6$. That is, s + r = 6, s odd and (N, 15) = 5.

Unlike in the previous theorem, here 5 divides N so that the factor 5^{2e} may or may not be a special factor for N.

The set F of ordered pairs (s,r) of positive integers with the stated conditions is $F = \{(1,5), (3,3), (5,1)\}$. Now for each $(s,r) \in F$ and for the 6-tuple of primes $(P_1, P_2, ..., P_s, Q_1, Q_2, ..., Q_r)$ dividing N, we find two 6-tuples $(p_1, p_2, ..., p_6)$ and $(p'_1, p'_2, ..., p'_6)$ of primes such that $(P_1, P_2, ..., P_s, Q_1, Q_2, ..., Q_r) \ge (p_1, p_2, ..., p_6)$ or $(p'_1, p'_2, ..., p'_6)$ according as 5^{2e} is a special factor or not for N.

Table *B* gives the 6-tuples $(p_1, p_2, ..., p_6)$ and $(p'_1, p'_2, ..., p'_6)$ and the corresponding products $\prod_{i=1}^{6} \frac{p_i}{p_i - 1}$ and $\prod_{i=1}^{6} \frac{p'_i}{p'_i - 1}$ for any given $(s, r) \in F$. Since each entry in columns III and V is less than 2, it follows *N* is deficient. Thus $\omega(N) \leq 6$ is not possible for a quasiperfect number with (N, 15) = 5. Hence the theorem holds.

Ι	II	III	IV	V
(s,r)	$(p_1, p_2,, p_6)$	$\prod_{i=1}^{6} \frac{p_i}{p_i - 1}$	$(p_1', p_2',, p_6')$	$\prod_{i=1}^6 \frac{p_i'}{p_i'-1}$
(1,5)	(5,7,11,13,17,19)	1.94904394	(13,5,7,11,17,19)	1.94904394
(3,3)	(5,13,17,7,11,19)	1.94904394	(13,17,29,5,7,11)	1.91240778
(5,1)	(5,13,17,29,37,7)	1.78684565	(13,17,29,37,41,5)	1.56987153

Table B

Acknowledgement

The second author wishes to thank the University Grants Commission, Government of India, New Delhi for the financial support under the Minor Research Project No.F MRP-5963 / 15 (SERO / UGC)

References

- Abbott, H. L., C. E. Aull, Brown, E., & D.Suryanarayana (1973) Quasiperfect numbers, *Acta Arithmetica*, XXII, 439-447; correction to the paper, *Acta Arithmetica*, XXIX (1976), 636–637.
- [2] Cattaneo, P. (1951), Sui numeri quasiperfetti, Boll. Un. Mat. Ital., 6(3), 59–62.
- [3] Cohen, G. L. (1982) The non-existence of quasiperfect numbers of certain form, *Fib. Quart.*, 20(1), 81–84.
- [4] Cohen, G. L. & Peter Hagis Jr. (1982) Some results concerning quasiperfect numbers, *J.Austral.Math.Soc.(Ser.A)*, 33, 275–286.
- [5] Kishore, M. (1975) Quasiperfect numbers are divisible by at least six distinct divisors, *Notices. AMS*, 22, A441.
- [6] Sándor , J. & Crstici, B. (2004) *Hand book of Number Theory II*, Kluwer Academic Publishers, Dordrecht/ Boston/ London.
- [7] Sierpinski, W. A Selection of problems in the Theory of Numbers, New York, (page 110).