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Abstract: Dris gave numerical bounds for the sum of the abundancy indices of qk and n2, where
qkn2 is an odd perfect number, in his master’s thesis. In this note, we show that improving the
limits for this sum is equivalent to obtaining nontrivial bounds for the Euler prime q.
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1 Introduction

Let σ(N) denote the sum of the divisors of the natural number N . If σ(N) = 2N and N is odd,
thenN is called an odd perfect number. Denote the abundancy index I ofN as I(N) = σ(N)/N .

Euler proved that every odd perfect number N has to have the form N = qkn2 where q is
prime (called the Euler prime of N ) satisfying q ≡ k ≡ 1 (mod 4) and gcd(q, n) = 1.

Dris proved the following lemmas in [2]:

Lemma 1.1. If N = qkn2 is an odd perfect number with Euler prime q, then we have the bounds

L(q) < I(qk) + I(n2) ≤ U(q),

where

L(q) =
3q2 − 4q + 2

q(q − 1)
= 3− q − 2

q(q − 1)

and

U(q) =
3q2 + 2q + 1

q(q + 1)
= 3− q − 1

q(q + 1)
.
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Lemma 1.2. If N = qkn2 is an odd perfect number with Euler prime q, then we have the numer-
ical bounds

57

20
< I(qk) + I(n2) < 3,

with the further result that they are best-possible.

In this note, we will prove the following results:

Theorem 1.1. If N = qkn2 is an odd perfect number with Euler prime q, then q ≤ 97 if and only
if

I(qk) + I(n2) ≤ 299

100
.

Theorem 1.2. If N = qkn2 is an odd perfect number with Euler prime q, then q > 5 if and only
if

I(qk) + I(n2) >
43

15
.

All of the proofs given in this note are elementary.

2 The proofs of Lemma 1.1 and Lemma 1.2

Let N = qkn2 be an odd perfect number with Euler prime q.
First, since N is perfect and I is (weakly) multiplicative, we have the following equation and

inequalities:

I(N) = I(qkn2) = I(qk)I(n2) = 2⇐⇒ I(n2) =
2

I(qk)

q + 1

q
= I(q) ≤ I(qk) =

σ(qk)

qk
=

1 + q + . . .+ qk

qk
=

qk+1 − 1

qk(q − 1)
<

qk+1

qk(q − 1)
=

q

q − 1

2(q − 1)

q
< I(n2) =

2

I(qk)
≤ 2q

q + 1
.

Notice that I(qk) < q/(q − 1) ≤ 5/4 since q prime with q ≡ 1 (mod 4) implies that q ≥ 5, so
that we have I(n2) = 2/I(qk) > 8/5 > 5/4 > I(qk).

Here is another way to prove I(qk) < I(n2). So from before, we have I(qk) < q
q−1 and

2(q−1)
q

< I(n2). Since q is an integer,

q

q − 1
6= 2(q − 1)

q
,

because otherwise (
q

q − 1

)2

= 2

which implies that
q

q − 1
=
√
2

contradicting q/(q − 1) is rational.
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Now, we want to prove that I(qk) < I(n2). It suffices to show that

q

q − 1
<

2(q − 1)

q
.

Suppose to the contrary that
2(q − 1)

q
<

q

q − 1
.

This implies that
2(q − 1)2 < q2

which further means that 2q2 − 4q + 2 < q2 or q2 − 4q + 2 < 0. Since q ≥ 5, q2 − 4q + 2 =

q(q − 4) + 2 ≥ 5(5− 4) + 2 = 7, which is a contradiction. This then gives an alternative (albeit
longer) proof for I(qk) < I(n2).

To summarize what we have so far:

1 <
q + 1

q
≤ I(qk) <

q

q − 1
<

5

4
<

8

5
<

2(q − 1)

q
< I(n2) ≤ 2q

q + 1
< 2.

Note that, when k = 1, we have the slightly stronger bounds:

I(qk) = I(q) =
q + 1

q
= 1 +

1

q
≤ 6

5
<

5

3
≤ I(n2) =

2

I(qk)
=

2

I(q)
.

We want to show first that

L(q) < I(qk) + I(n2) ≤ U(q),

where

L(q) =
3q2 − 4q + 2

q(q − 1)
= 3− q − 2

q(q − 1)

and

U(q) =
3q2 + 2q + 1

q(q + 1)
= 3− q − 1

q(q + 1)
.

Consider the product (
I(qk)− q

q − 1

)
·
(
I(n2)− q

q − 1

)
.

This product is negative since I(qk) < q/(q − 1) < I(n2). Therefore,

2 +

(
q

q − 1

)2

= I(qk)I(n2) +

(
q

q − 1

)2

<
q

q − 1
·
(
I(qk) + I(n2)

)
from which we obtain

2(q − 1)

q
+

q

q − 1
< I(qk) + I(n2).

Finally, we have

L(q) =
2(q − 1)

q
+

q

q − 1
=

3q2 − 4q + 2

q(q − 1)
= 3− q − 2

q(q − 1)
,
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as desired.
Next, consider the product(

I(qk)− q + 1

q

)
·
(
I(n2)− q + 1

q

)
.

This product is nonnegative since (q + 1)/q ≤ I(qk) < I(n2). Consequently, we have

2 +

(
q + 1

q

)2

= I(qk)I(n2) +

(
q + 1

q

)2

≥ q + 1

q
·
(
I(qk) + I(n2)

)
from which we obtain

2q

q + 1
+
q + 1

q
≥ I(qk) + I(n2).

Finally, we have

U(q) =
2q

q + 1
+
q + 1

q
=

3q2 + 2q + 1

q(q + 1)
= 3− q − 1

q(q + 1)
,

as desired.
This proves Lemma 1.1.
(We follow the discussion in [1] for our proof of Lemma 1.2 here.)
By using a method similar to that used to prove Lemma 1.1, we can show that

57

20
< I(qk) + I(n2) < 3.

We now prove that these bounds are best-possible. It suffices to get the minimum value for L(q)
and the maximum value for U(q) in the interval [5,∞), or if either one cannot be obtained, the
greatest lower bound for L(q) and the least upper bound for U(q) for the same interval would
likewise be useful for our purposes here.

From basic calculus, we get the first derivatives of L(q) and U(q) and determine their signs
in the interval [5,∞):

L′(q) =
q(q − 4) + 2

q2(q − 1)2
> 0

and

U ′(q) =
q(q − 2)− 1

q2(q + 1)2
> 0

which means that L(q), U(q) are increasing functions of q on the interval [5,∞). Hence, L(q)
attains its minimum value on that interval at L(5) = 57/20, while U(q) has no maximum value
on the same interval, but has a least upper bound of

lim
q→∞

U(q) = 3.

This confirms our earlier findings that

57

20
< I(qk) + I(n2) < 3

with the further result that such bounds are best-possible.
This proves Lemma 1.2.
Note that when k = 1 we have the slightly stronger bound 43/15 ≤ I(qk) + I(n2).
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3 The proofs of Theorem 1.1 and Theorem 1.2

Let N = qkn2 be an odd perfect number with Euler prime q.
First, we want to show that q ≤ 97 if and only if

I(qk) + I(n2) ≤ 299

100
.

Suppose that L(q) < I(qk) + I(n2) ≤ 299
100

. This implies that

L(q) = 3− q − 2

q(q − 1)
<

299

100

1

100
<

q − 2

q(q − 1)

Since q ≥ 5, we have
q2 − q < 100q − 200

q2 − 101q + 200 < 0.

This implies that

q <
101 +

√
9401

2
≈ 98.9794

from which we obtain q ≤ 97 (since q is prime and q ≡ 1 (mod 4)).
Does the converse hold? That is, if N = qkn2 is an odd perfect number with Euler prime q,

does q ≤ 97 imply that I(qk) + I(n2) ≤ 299
100

?
To this end, assume that q ≤ 97, and suppose to the contrary that

299

100
< I(qk) + I(n2) ≤ U(q).

This means that
U(q) = 3− q − 1

q(q + 1)
>

299

100
,

so that we obtain
1

100
>

q − 1

q(q + 1)
.

Since q ≥ 5, we get
q2 + q > 100q − 100

q2 − 99q + 100 > 0.

This implies that

q >
99 +

√
9401

2
≈ 97.9794

contradicting q ≤ 97.
This proves Theorem 1.1.
We now show that q > 5 if and only if

I(qk) + I(n2) >
43

15
.

57



Suppose that U(q) ≥ I(qk) + I(n2) > 43/15. This means that

U(q) = 3− q − 1

q(q + 1)
>

43

15
,

which implies that
2

15
>

q − 1

q(q + 1)
.

Since q ≥ 5, we have
2q2 + 2q > 15q − 15

2q2 − 13q + 15 > 0

(2q − 3)(q − 5) > 0,

from which we obtain q > 5.
Now assume that q > 5. We want to prove that I(qk) + I(n2) > 43/15. Suppose to the

contrary that I(qk) + I(n2) ≤ 43/15.
Since q is prime and q ≡ 1 (mod 4), this implies that q ≥ 13. This implies that we have the

bounds
I(qk) <

q

q − 1
≤ 13

12
<

24

13
< I(n2),

from which we obtain (
I(qk)− 13

12

)
·
(
I(n2)− 13

12

)
< 0

2 +

(
13

12

)2

= I(qk)I(n2) +

(
13

12

)2

<
13

12
·
(
I(qk) + I(n2)

)
24

13
+

13

12
< I(qk) + I(n2)

I(qk) + I(n2) >
457

156
≈ 2.929487

contradicting

I(qk) + I(n2) ≤ 43

15
= 2.8666.

This proves Theorem 1.2.

4 Generalization of Theorem 1.1

It is possible to prove the following generalization of Theorem 1.1:

Theorem 4.1. Let N = qkn2 be an odd perfect number with Euler prime q, and let ε satisfy
0 < ε < 3− 2

√
2. Then I(qk) + I(n2) ≤ 3− ε if and only if

q <
ε+ 1 +

√
ε2 − 6ε+ 1

2ε
.
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Here, we only prove one direction of Theorem 4.1. We show that if I(qk) + I(n2) ≤ 3 − ε,
then

q <
ε+ 1 +

√
ε2 − 6ε+ 1

2ε
.

Since
3− q − 2

q(q − 1)
= L(q) < I(qk) + I(n2) ≤ 3− ε,

then we have
0 < ε <

q − 2

q(q − 1)

from which we get
εq2 − εq < q − 2

εq2 − q(ε+ 1) + 2 < 0.

Finally we obtain

q <
ε+ 1 +

√
ε2 − 6ε+ 1

2ε
.

Notice how Theorem 1.1 becomes a special case of Theorem 4.1 for ε = 1
100

.

5 Concluding remarks

The results in this paper were motivated by the remarks of Joshua Zelinsky on a post of the
author in the Math Forum at Drexel in 2005. Showing the truth of the improvements outlined in
this paper remains an open problem.

Observe that, from Lemma 1.1, when L(x) and U(x) are viewed as functions on the domain
D = R \ {−1, 0, 1}, then

L(x+ 1) = U(x)

and
U(2) = U(3) = L(3) =

17

6
<

57

20
.
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