Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 22, 2016, No. 2, 58–63

Sequences obtained from $x^2 \pm y^2$

J. V. Leyendekkers¹ and A. G. Shannon^{2, 3}

¹ Faculty of Science, The University of Sydney, NSW 2006, Australia ² Faculty of Engineering & IT, University of Technology, Sydney, NSW 2007, Australia 3 Campion College, PO Box 3052, Toongabbie East, NSW 2146, Australia e-mails: t.shannon@campion.edu.au, Anthony.Shannon@uts.edu.au

Received: 15 July 2015 **Accepted:** 6 May 2016

Abstract: Integers in class $\overline{3}_4$ of the modular ring Z₄ equal $x^2 - y^2$ but not $x^2 + y^2$ whereas integers in class 1₄ can equal both $x^2 + y^2$ and $x^2 - y^2$. This structure generates an infinity of sequences with neat curious patterns.

Keywords: Modular rings, Golden Ratio, Infinite series, Binet formula, Right-end-digits, Fibonacci sequence, Meta-Fibonacci sequences.

AMS Classification: 11B39, 11B50.

1 Introduction

We have previously shown that primes in class 1_4 of the modular ring Z_4 (Table 1) equal $x^2 + y^2$ and that there is only one such (x, y) couple $[2, 3]$ and this couple has no common factors.

Table 1. Classes and rows for *Z*⁴

On the other hand, composites in this class have either one couple with common factors or multiple couples; the same number as the factors. These couples can be predicted via the simple equation [2]

$$
x, y = \frac{1}{2} \left(A \pm \sqrt{2N - A^2} \right) \tag{1.1}
$$

in which *N* is the integer and $A = x + y$ with *x* odd and *y* even. For Fibonacci primes the (x, y) couple is given by [4]:

$$
F_p = F_{\frac{p+1}{2}}^2 + F_{\frac{p-1}{2}}^2. \tag{1.2}
$$

This identity itself follows from Equation 8 of [5]. Here we show that integers in both $\bar{1}_4$ and $\overline{3}_4$ equal a difference of squares, $x^2 - y^2$.

- In class $\overline{3}_4$ there are no even powers (Table 1) so that *x* is always even
	- o $\overline{0}_4 \overline{1}_4 = 4(r_0 r_1 1) + 3.$
	- o only the primes have one couple for $x^2 y^2$.
- In class 1₄ primes and squares have only one (x, y) couple for $x^2 y^2$.

2 Class 34

For prime, *p*, it can be shown that $(x + y) = A = p$, and with

$$
p = (x^2 - y^2) = (x - y)A,
$$

then $x - y = 1$, so that *x* and *y* are more easily calculated from

$$
x = \frac{1}{2}(p+1),
$$
 (2.1)

and

$$
y = \frac{1}{2}(p-1). \tag{2.2}
$$

For composites there are the same number of (x, y) couples as factors. One (x, y) couple satisfies Equations (2.1) and (2.2). If there are two factors, then there will be another (x, y) couple apart from the one which satisfies Equations (2.1) and (2.2). If there are five factors, then there will be another four (x, y) couples.

The *A* values equal a factor of *N* or multiples of them as in Tables 2 and 3 for *N** = 1 and 7 (in which N^* indicates the right-end-digit (RED) of *N*). Similar results may be found for $N^* = 3$, 5 and 9. The others are calculated from

$$
x = \frac{1}{2}(A + \frac{N}{A}),
$$
 (2.3)

and

$$
y = \frac{1}{2}(A - \frac{N}{A}).
$$
 (2.4)

A is taken from the largest factor (or multiples of factors). Hence with

$(x + y) = A$

and

$$
(x - y) = N/A,
$$

we have (Tables 2 and 3)

$$
(x - y)(x + y) = N.
$$

		(2.3), (2.4)		(2.1), (2.2)	
\boldsymbol{N}	Factors	x, y	\boldsymbol{A}	x, y	\boldsymbol{A}
231	3, 7, 11	(20, 13)	33	(116, 115)	231
		(16, 15)	21		
1011	3,337	(170, 167)	337	(506, 505)	1011
2751	3, 7, 131	(200, 193)	393	(1376, 1375)	2751
		(76, 55)	131		
3291	3, 1097	(550, 547)	1097	(1646, 1645)	3291
4431	3, 7, 211	(320, 313)	633	(2216, 2215)	4431
		(116, 95)	211		
6511	17, 383	(200, 183)	383	(3256, 3255)	6511
20031	3, 11, 607	(916, 905)	1821	(10016, 10013)	20031
		(320, 287)	607		
58811	23, 2557	(1290, 1267)	2557	(29406, 29405)	58811
109311	3, 83, 439	(700, 617)	1317	(54656, 54655)	109311
		(344, 95)	439		
389871	3, 3, 43319	(21664, 21655)	43319	(194936, 194935)	389871
		(64980, 64977)	129957		
535971	3, 19, 9403	(4730, 46723)	9403	(267986, 267985)	535971
		(14114, 14995)	28209		

Table 2. $N \in \overline{3}_4$

		(2.3), (2.4)		(2.1), (2.2)	
\boldsymbol{N}	Factors	x, y	\boldsymbol{A}	x, y	\boldsymbol{A}
87	3, 29	(16, 13)	29	(44, 43)	87
187	11, 17	(14, 3)	17	(94, 93)	187
427	7,61	(34, 27)	61	(214, 213)	427
1687	7, 241	(124, 117)	241	(844, 843)	1687
4047	3, 19, 71	(116, 97)	213	(2024, 2023)	4047
		(64, 7)	71		
6187	23, 269	(146, 123)	269	(3094, 3093)	6187
24027	3,8009	(4006, 4003)	8009	(12014, 12013)	24027
53367	3, 17789	(8896, 8893)	17789	(26684, 26683)	53367
110667	3, 37, 997	(1514, 1477)	2991	(55334, 55333)	110667
		(554, 443)	997		
389187	3, 3, 43243	(64866, 64863)	129729	(94594, 94593)	389187
		(21626, 216517)	43243		
533867	149, 3583	1866, 1717)	3583	(266934, 266933)	533867

Table 3. $N \in \overline{3}_4$

3 Class $\overline{1}_4$

For class 1₄ primes and squares have only one (x, y) couple for $(x^2 - y^2)$. Composites have the same number of couples as there are factors. Some examples are given in Table 4 for $N^* = 7$; similar results can be obtained for $N^* = 1, 3, 5$ and 9.

To calculate $(x^2 - y^2)$ from the factors, we use Equations (2.3) and (2.4), while for primes and for first couples for composites, we use Equations (2.1) and (2.2). For $(x^2 + y^2)$ we use Equation (1.1). Here we use the (x, y) couples from a $\overline{3}_4$ integer for $(x^2 + y^2)$ integers.

		(2.3), (2.4)		(2.1), (2.2)	
\boldsymbol{N}	Factors	x, y	\boldsymbol{A}	x, y	\boldsymbol{A}
77	7, 11	(9, 2)	11	(39, 38)	77
117	3,39	(16, 13)	39	(59, 58)	117
357	3, 119	(61, 58)	119	(179, 178)	357
1677	3, 13, 43	(71, 58)	129	(839, 838)	1677
		(41, 2)	43		
4017	3, 13, 103	(161, 148)	309	(2009, 2008)	4017
		(71, 32)	103		
6177	3, 7, 19, 161	(805, 322)	1127	(3089, 3088)	6177
		(308, 175)	483		
		(280, 117)	397		
26057	71, 367	(219, 148)	367	(13029, 13028)	26057
53357	233, 229	(231, 2)	233	(26679, 26678)	53357
121017	3, 13, 3103	(20171, 20168)	40339	(60509, 60508)	121017
		(1571, 1532)	3103		
389917	11, 35447	(17729, 17718)	35447	(194959, 194958)	389917
535997	7, 11, 6961	(24367, 24360)	48727	(267999, 267998)	535997
		(3519, 3442)	6961		

Table 4. $N \in \overline{1}_4$

4 Sequences from $(x^2 \pm y^2)$

Starting with a class 3_4 integer N_1 with $(x_1^2 - y_1^2)$, the (x_1, y_1) couple may be used to generate an integer from class 1₄, *N*₂ say, using $(x_1^2 + y_1^2)$. *N*₂ will also have an *x*₂, *y*₂ couple for *N*₃, $(x_2^2 - y_2^2)$, and so on.

Thus, a sequence of integers can be generated to infinity (Table 5). For example, in the first row of Table 2, the composite 231 has three factors, $(3, 7, 11)$, so that there will be three (x, y)

couples (16, 5), (20, 13) and (116, 115). Thus three sequences can be generated from 231. Such a sequence with $N_1 = 231$ is shown in Table 6. An infinity of sequences can be generated in this way as in Figure 1. Of course, the $(x^2 + y^2)$ derived sequences will all be in class $\overline{1}_4$.

Figure 1. General oscillating sequence

Table 5. Primes: Equations (2.1, 2.2); Composites: Equations (2.3, 2.4)

5 Concluding example

Table 6. Example of an oscillating sequence of the type: {231, 281, 281, 39481, 39481, 4611769, 4611769, 195908569, 195908569, ...}

Figure 2. Oscillating sequence for $N_1 = 231$

There is in a sense in which these oscillating sequences are also related to pulsated Fibonacci recurrence sequences [1].

References

- [1] Atanassov, K., Daryl, T., Deford, R., & Shannon, A. G. (2014) Pulsated Fibonacci Recurrences. *The Fibonacci Quarterly.* 52(5), 22–27.
- [2] Leyendekkers, J. V., & Shannon, A. G. (2015) The sums of squares for primes. *Notes on Number Theory & Discrete Mathematics*. 21(4), 17–21.
- [3] Leyendekkers, J. V., Shannon, A. G., & Rybak, J. M. (2005) *Pattern Recognition: Modular Rings and Integer Structure.* North Sydney: Raffles KvB Monograph No.9.
- [4] Livio, M. (2002) *The Golden Ratio*. New York, Broadway Books.
- [5] Vajda, S. (1989) *Fibonacci Numbers & The Golden Section: Theory and Applications*. Chichester, Ellis Horwood.