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The definitive solution of Gauss’s lattice
points problem in the circle
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Abstract: By means of Bienayme’s theorem of Statistics is found that the remainder term in
Gauss’s problem about the lattice points in the circle is a function normally distributed with mean
value zero and standard deviation 1,10368 multiplied by the fourth root of x. This result can not
be improved.
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Our starting point of departure will be the known formula

A(x) = πx+ n
√
x

N∑
n=1

N(n)√
n
J1(2π

√
nx+O

(x
n

)
,

where A(x) is their quantity of lattice points in the entire circle of diameter
√
x, N(n) is the

quantity of solutions of the Diophantine equation x21 + x22 = n, and J1(x) is the Bessel function
of the first order. Here, any point in the border of the circle is counted with weight 1

2
.

Replacing the Bessel functions by their asymptotic approximations

J1(2π
√
nx) ≈ 1

π 4
√
nx

cos(2π
√
nx− 3

4
π),

we obtain that

A(x) ≈ πx+
4 4
√
x

π

N∑
n=1

N(n)

cos
(2π
√
nx− 3

4
π). (A)

We formulate three hypotheses.
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Hypothesis 1: The function y = cos a0x has mean value zero, whatever n and an.

Hypothesis 2: It varies at random between limits ±1, as an and x have different values.

Hypothesis 3: cos(anx) has a distribution probability function that is constant.

Now, the variance of a function of constant probability in the interval (a, b) is known to be

(b− a)2

12

and
σ =

b− a√
12
.

In our case, as b = 1 and a = −1, it turns out that

σ =
2√
12

=
1√
3

= 0.577.... (B)

Besides, we have Bienayme’s theorem concerning the variable sum of random independent
variables, which states.

If x = a1x1 + a2x2 + ...+ amxm (where xi are independent random variables), then holds:

x = a1x1 + a2x2 + ...+ amxm, (C)

where xi represents mean values, and the standard deviation σx of the sum is given by

σ2
x = a21σ

2
x1

+ a22σ
2
x2

+ ...+ a2mσ
2
xm . (D)

We apply this theorem to the series

N∑
n=1

N(n)

n3/4
cos(2π

√
nx− 3

4
π),

choosing

an =
N(n)

n3/4
and xn = cos(2π

√
nx− 3

4
π).

The sum
N∑
n=1

is a sample of the universe
∞∑
n=1

, so that by the Central Limit Theorem has a

normal distribution, defined by its mean value and its standard deviation (STD).
Then, by Hypothesis 1 and formula (A), the mean value is zero and the STD, according to

(A), (B) and (D), is:

STD =
1√
3

{
N∑
n=1

N2(n)

n3/2

}1/2

.

The series between brackets is convergent, and its value, when N →∞, is (according to [1],
Ch. 8, p. 251)

16ζ2(3
2
)L2(3

2
)

ζ(3)(1 + 23/2)
.
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But
ζ(

3

2
) = 2.6124..., ζ(3) = 1.20206..., 1 + 2−3/2 = 1.13355...,

L(
3

2
) =

∏
p≡1(mod n)

1

1− 1
p3/2

∏
p≡3(mod n)

1

1− 1
p3/2

= 0.8645...

from which follows
∞∑
n=1

N2(n)

n3/2
= 2.2543...

and

STD ≤ 1√
3

{∑
n=1

N2(n)

n3/2

}1/2

= 0.86683...

Returning to (A), we deduce that the probability that A(x) − πx be comprised between the
values ±t 4

π
STD 4

√
x (or ±1.1068t 4

√
x), i.e.,

Φ(t) =
1√
2π

∫ t

−t
e−u

2/2du.

In this theorem, neither the value 1
4

for x, nor the value 1.1068... for the coefficient can be
improved, so that the result is definitive. Figure 1 shows the excellent agreement between the
preceding calculation and the numerical computations.

Figure 1: The function R(x) = A(x) − πx in the range 1 ≤ x ≤ 105. Between the two curves
t = ±1 are comprised 68.268% of the values and between the two curves t = ±2 are comprised
95.450% of the values.
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