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1 Introduction  

The German mathematician Johannes Kepler (1571–1630) showed that the ratio of consecutive 

Fibonacci numbers converges to the Golden Ratio [7]. This is also the case for the members of 

the Golden Ratio Family [4] associated with generalized Fibonacci sequences. Another 

property discovered by Kepler, but often attributed to the Scottish mathematician, Robert 

Simson (1687–1768) is that for the sequence of ordinary Fibonacci numbers {Fn}: 
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in which a is in Class 441 Z∈ (a modular ring) (Table 1) with row r1 and {Fn(a)} represents a 

generalized Fibonacci sequence, where the sequence of ordinary Fibonacci numbers can be 

expressed as {Fn(5)} in this notation [3, 5]. The purpose of the paper is to explore some of the 

properties of {Fn(a)}, including period properties [8]. 

2 The generalized sequence {Fn(a)} 

In this notation, the corresponding generalized Fibonacci numbers satisfy 

 )()()( 111 aFraFaF nnn −+ +=  (2.1) 

and any Golden Ratio family member is given by 
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and the generalized Binet formula in this notation is [10] 
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which is well-known for the Fibonacci numbers as 
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Table 1. Classes and rows for Z4 

We note in passing that the Binet formula for the Fibonacci numbers is also usually 

attributed incorrectly to Jacques Philippe Marie Binet (1786–1856), but it was previously 

known to such famous mathematicians as Abraham de Moivre (1667–1754), Daniel Bernoulli 
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Class 
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40  41  42  43  Comments 

0 0 1 2 3 4
i

N r i= +  

1 4 5 6 7 even 40 , 42  

2 8 9 10 11 ( )2
,

n n
N N ∈ 40  

3 12 13 14 15 odd 41 , 43 ; 2n
N ∈ 41  
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(1700–1782), and Leonhard Euler (1707–1783) [12]. Another way of generalizing the Binet 

formula, related to (2.3), may be found in [2]. 

When r1 = 7, a = 29, and Table 2 lists the first ten elements of {Fn(29)}. 

 
n 1 2 3 4 5 6 7 8 9 10 

Fn 1 1 8 15 71 176 673 1905 6616 19951 

Table 2. Some terms of {Fn(29)} 

Thus when n = 8, Equation (1.1) becomes  
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When r1 = 10, a = 41, and the first ten elements of the sequence {Fn(41)} are set out in 

Table 3. 

 
n 1 2 3 4 5 6 7 8 9 10 

Fn 1 1 11 31 131 341 1651 5061 21571 72181 

Table 3. Some terms of {Fn(41)} 

Thus when n = 4, Equation (1.1) becomes  

 

( )
( ).)41()41()41(10

1111100

1000

1311131)41()41()41(

31

2

2

2

2

2

53

2

4

FFF

FFF

−=

×−=

−=

×−=−

 

However, not all the ordinary Fibonacci properties seem to generalize to other Golden 

Ratio Fibonacci sequences. For instance, an interesting characteristic of ϕa 
is that the sum of 

any ten consecutive ordinary Fibonacci numbers (S10) is always equal to 11 times the seventh 

number F7(5) [7]. This does not seem to extend to generalized Fibonacci sequences, though 

there are some “near misses” as seen in Table 4. This provokes the questions: are there 

analogues of the integer 11 and F7(5) results with these other sequences? What are the deeper 

underlying patterns? 
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r1 a S10 i Factors of S10+i 

1 5 143  0 11, 13 (=F7(5)) 

2 9 682  0 11, 2, 31 

3 13 2053  4 11, 187 

4 17 4826  3 11, 439 

5 21 9715  –2 11, 883 

6 25 17578  0 11, 2, 799 

7 29 29417  –3 11, 2, 1337 

8 33 46378  –2 11, 2
3
, 527 

9 37 69751  0 11, 17, 373 

10 41 100970  –1 11, 9179 

11 45 141613  1 11, 2, 6437 

12 49 395602  2 11, 2
2
, 3

5
, 37 

Table 4. Factors of S10 + i 

3 Unit digit periods 

Joseph Louis Lagrange (1786–1813) showed that the unit digit (right-end-digit, RED) for ϕ 5 

repeats itself with a period of 60 [7]. The periodicity of these generalized Fibonacci numbers is 

more complex but is uniform for sequences with the same RED for all ϕ a (Table 5). 

 
*

1r  a b c d e f g h i 

0 5 1 1 – – – – – – 

1 9 60 60 20 19 14 3 3 9 

2 13 4 4 – – – – – – 

3 17 24 24 8 4 – – – – 

4 21 6 6 – – – – – – 

5 25 3 3 – – – – – – 

6 29 20 20 13 3 – – – – 

7 33 12 12 8 4 – – – – 

8 37 21 23 7 8 – – – – 

9 5 6 6 – – – – – – 

Table 5. Periods for unit digits 1** == mn FF  (Superscript * for REDs) 

Periods are 2-fold ( ),9,5,4,2*

1 =r 4-fold ( ),8,7,6,3*

1 =r  and 6-fold ( ).,...31,21,11,1*

1 =r  Their 

actual periodicities are generated by the formulas in Table 6. For instance, the period 2-fold 

periods when a = 21 are given by n = 1 + 6t, n = 2 + 6t, t = 1, 2, 3, ... .  



37 

j nj mj 

1 1 + bt 2 + ct 

2 n1 – d m1 – e 

3 n2 – e 1 + ct 

4 n3 – f m3 – g 

5 – m4 – h 

6 – m5 – i 

Table 6. Periodicity formulas for Table 5 (t = 1, 2,3, ...) 

This structure applies to all other REDs. For example, for ( ) 7* =aFn , the starting numbers 

are 14 and 16, so the first seven numbers are, respectively, 14, 24, 34, ..., and 16, 26, 36, ..., 

with ( ) 7* =aFn occurring at 74 and 76. The specific values of d, e, f, g, h, i will vary but will 

satisfy the expressions in Tables 5 and 6. 

4 Pythagorean and Fibonacci triples 

When members of the family of prime subscripted Fibonacci numbers belong to the class 41  
and when Fp is itself prime, Fp equals a sum of squares as in (4.2) below. If Fp is composite 

and its factors do not all belong to the class 43 then the composite Fp also equals a sum of 

squares. Thus any of these Fp can form a Pythagorean triple [5, 9]. These triples can be 

represented by 

 
222
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in which ,,1
22

4 yxcc +=∈ a  = 2xy, and b = x
2
 – y

2
. For the ordinary Fibonacci numbers we 

may talk about associated ‘Fibonacci triples’ ( )
nnn FFF ,, 112 ++  when 2n + 1 is prime  

 22

112 nnn FFF += ++  (4.2) 

For example, when r1 = 1 and n = 5 this becomes  
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and the Fibonacci triple is ( ))5(),5(),5( 112 nnn FFF ++  = (89, 8, 5). We seek an analogue to (4.2) 

for the other Golden Ratio Fibonacci numbers, Fn(a), displayed in Table 7.  
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r1 n 1 2 3 4 5 6 7 8 9 10 11 12 

0 Fn(1) 1 1 1 1 1 1 1 1 1 1 1 1 

1 Fn(5) 1 1 2 3 5 8 13 21 34 55 89 144 

2 Fn(9) 1 1 3 5 11 21 43 85 171 341 683 1365 

3 Fn(13) 1 1 4 7 19 40 97 217 508 1159 2683 6160 

4 Fn(17) 1 1 5 9 29 65 181 441 1165 2929 7589 19305 

5 Fn(21) 1 1 6 11 41 96 301 781 2286 6191 17621 48576 

6 Fn(25) 1 1 7 13 55 133 463 1261 4039 11605 35839 105469 

7 Fn(29) 1 1 8 15 71 176 673 1905 6616 19951 66263 205920 

Table 7. Fn(a), n = 1,2,…,12 

For example, when r1 = 2, and n is odd, ,3)( 4∈aFn but when n is even, ,1)( 4∈aFn so that 

only F2m can be used for c in (4.1). For example, when n = 4, we have 
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The Pythagorean triple is (85, 84, 13) but there is no associated Fibonacci triple in the even 

subscripted case. If, however, we consider n = 5, then we have 
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and there is a Fibonacci triple (683, 21, 11).  

When r1 = 3, each triple of the sequence {Fn(13)} has two odd and one even numbers.  

The numbers in class 41  have the form n = 1 + 6t and n = 2 + 6t. The sequence is {1, 1, 4, 7, 

19, 40, 97, …} (Table 7). For instance, F7(13) = 97, which may be used for c in (4.1). We then 

use the equation 
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A F A
x y

± −
=  (4.3) 

in which x is odd and y is even with A = x + y [6], so that in this case x = 9 and y = 4 and the 

Pythagorean triple is (97, 65, 72); that is, 



39 

( ) ( ) .)5()5()5()5(

7265

51844225

9409

97)13(

2

73

2

7

2

5

22

22

7

FFFF

F

+=

+=

+=

=

=

 

For the corresponding Fibonacci triple, we have 
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The Fibonacci triple is then (97, 7, 4) and a picture of the analogue we seek is emerging, 

namely 

 .)()()( 2
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This can be readily proved with the corresponding Binet formula (2.3) (as in the case of 

the ordinary Fibonacci numbers). We provide another illustration. 

When r1 = 7, for each triple of the sequence {Fn(29)} the structure is similar. For instance, 

F13(29) = 669761, which may be used for c in (4.1). In this case, x = 505 and y = 644 (from 

(4.3)) and the Pythagorean triple is (669761, 159711, 650440); that is, 
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The corresponding Fibonacci triple will be found from 
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The Fibonacci triple is (669761, 673, 176).  

5 Final comments 

Further observation of the cells in Table 7 can reveal other properties of the generalized 

Fibonacci numbers which are analogous to the well-known properties of the ordinary 

Fibonacci numbers as well as relations among the sequences for varying values of a, such as 

intersections [1, 11]. That is, there are very likely many special characteristics for each a of the 

Golden Ratio family as well as the shared ones. For instance, when r1 = 2, 
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in which ),2( nδ is the divisor function 
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41∈a  always and only integers in this class can be a sum of squares (all primes, for example, 

and composites with some factors 41∈ ). Other examples include considering Golden Ratio 

Lucas numbers Ln(a) which also satisfy (2.1) (Table 8). We see from this table that equivalent 

to (4.4) we have  

 .)()()( 2
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This may be compared with the known [13, Equation (25)]: 

 .)5()5()5(5 22

112 nnn LLF += ++  (5.4) 

 

r1 n 1 2 3 4 5 6 7 8 9 10 11 

0 Ln(1) 1 1 1 1 1 1 1 1 1 1 1 

1 Ln(5) 1 3 4 7 11 18 29 47 76 123 199 

2 Ln(9) 1 5 7 17 31 65 127 257 511 1025 2047 

3 Ln(13) 1 7 10 31 61 154 337 799 1810 4207 9637 

4 Ln(17) 1 9 13 49 101 297 701 1889 4693 12249 31021 

5 Ln(21) 1 11 16 71 151 506 1261 3791 10096 29051 79531 

6 Ln(25) 1 13 19 97 211 793 2059 6817 19171 60073 175099 

7 Ln(29) 1 15 22 127 281 1170 3137 11327 33286 112575 345577 

Table 8. Ln(a), n = 1, 2, …, 11 

 

Similarly, the well-known [13, Equation (6)]  

 )5()5()5( 11 −+ += nnn FFL  (5.5) 

becomes 

 )()()( 111 aFraFaL nnn −+ +=  (5.6) 

for the generalized Golden Ratio Fibonacci and Lucas sequences. 
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