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Abstract: For prime p and 1 ≤ a, b, c < p let V be the algebraic set of the congruence
ax − by ≡ c (mod p) in the plane. For an arbitrary box of size B we obtain a necessary and
a sufficient conditions on the size B in order for the box to meet V. For arbitrary subsets S, T

of Zp we also obtain a necessary and a sufficient conditions on the cardinalities of S, T so that
S + T = Zp.
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1 Introduction

Let V be the set of solutions of the congruence

ax− by ≡ c (mod p) (1.1)

in the plane defined by V = { (x, y) ∈ Z × Z : ax− by ≡ c (mod p) } .
In this paper, we view the set of solutions V of (1.1) in the plane as a set of lattice points on

a lines Lk defined by Lk : ax − by = c + k p where k ∈ Z. We show the existence of a box
of size B = dp

a+b
contains no element of V, where d = (a, b), and we prove every box of size

B = dp
a+b

+ 2
(
b
d

)
meets V.

We also study the representation of the finite field Zp as a sum of two subsets S, T. For such
two subsets we define S + T as S + T = {s+ t : s ∈ S, t ∈ T} . It follows from the work
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of [3] that for any sets S, T with |S| · |T | > 2p, ( 2S ) ( 2T ) + ( 2S ) ( 2T ) = Zp and
( 2S) ( 2T )− ( 2S) ( 2T ) = Zp. In this paper we prove the existence of two subsets S, T with
|S| = p−1

2
= |T | and S + T 6= Zp, and in contrary to that every two subsets S, T of ZP with

|S| ≥ p+1
2

and |T | ≥ p+1
2

satisfies S + T = Zp.

2 Theorems and proofs

Theorem 1. There are two subsets S, T of Zpwith |S| = |T | = p−1
2

and S + T 6= Zp.

Proof. Consider the congruence

x− y ≡ p− 1

2
(mod p) (2.1)

and the line L0 defined by L0 : x − y = p−1
2
. The x − intercept

(
p−1
2

, 0
)

is a solution
of (2.1) on L0. Let L−1 be the line defined by L−1 : x − y = p−1

2
− p = −

(
p+1
2

)
. The

y − intercept
(
0, p+1

2

)
is a solution of (2.1) on L−1. Now consider the rectangle R determined

by the vertices (0, 0) ,
(
p−1
2
, 0
)
,
(
0 , p+1

2

)
and

(
p−1
2
, p+1

2

)
, then R contains no solution of (2.1). In

particular, there is a box of size B = p−1
2

cornered at the origin and contains no solution of (2.1).
Let S =

{
s : 0 ≤ s < p−1

2

}
and T =

{
−t : 0 ≤ t < p−1

2

}
then c = p−1

2
/∈ S + T. �

The result in Theorem 1 is best possible as the next theorem suggests.

Theorem 2. Let S , T arbitrary subsets of Zp, if |S| ≥ p+1
2

and |T | ≥ p+1
2

, then S + T = Zp.

Proof. If c ∈ Zp, let W = −T + c = {−t+ c : t ∈ T}, then |W | = |T | ≥ p+1
2

, therefore
S
⋂

W 6= ∅. Then there is s0 ∈ S and w0 ∈ W such that −t0 + c = s0 for some t0 ∈ T.

Therefore c = s0 + t0 ∈ S + T. �

Theorem 3. Every box of size B ≥ p+1
2

in the plane contains a solution of (1.1).
Proof. Let I be the projection of the box on the x − axis, and J be the projection on the y-
axis, let S = a · I = {ax : x ∈ I} and T = −b · J = {−by : y ∈ J}, then |S| ≥ p+1

2
and

T ≥ p+1
2

, hence by Theorem 2 for every c ∈ Zp there exists ax ∈ S and −by ∈ T such that
ax− by = c. �

Theorem 4. There exist a box of size B =
√
p− 1 contains no solution of (1.1).

Proof. Let S be the square defined by S : {x : 0 < x < p} × {y : 0 < y < p} .
Since

(√
p− 1

) ( [√
p
]
+ 1
)

<
(√

p− 1
) (√

p+ 1
)
= p − 1 < p, then the interval

(0 , p ) contains at least
[√

p
]

+ 1 subintervals each of length
√
p − 1, therefore the square S

contains at least
( [√

p
]
+ 1
)2

> p subsquares each of size
√
p − 1, and since number of solu-

tions of (1.1) in the square is p− 1, then by pigeon-hole principle there is at least one subsquare
contains no solution of (1.1). �

Now we view the solutions of (1.1) in the plane as a set of lattice points on a lines Lk defined
by Lk: ax− by = c+ kp where k ∈ Z.
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If Lk is such a line, then the next line to the right is Lk+d defined by Lk+d : ax − by =

c+ kp+ dp, where d = (a, b) .

The horizontal distance H between the lines Lk and Lk+d is H = dp
a

, the horizontal distance
between solutions on the line Lk is h = b

d
, and the vertical distance v is v = a

d
.

Theorem 5. For every a, b, c there is a box of size B= dp
a+b

contains no solution of (1.1).
Proof. For k ∈ Z, and d divides c + kp, where d = (a, b), consider the two lines Lk, Lk+d.
Let S the largest square of size B can be inscribed between these two lines. If

(
x, ax−c−kp

b

)
is

the corner of the square on Lk then
(
x+B, ax−c−kp

b
−B

)
is the corner on Lk+d and satisfies its

equation. Therefore

a (x+B)− b

(
ax− c− kp

b
−B

)
= c+ kp+ dp

(a+ b)B = dp

B =
dp

a+ b
.

�

Theorem 6. Let B be the size of the box obtained in Theorem 5, if B + b
d
> a

d
, then any box of

size B + 2
(
b
d

)
contains a solution of (1.1).

Proof. We are to find maximum enlargement of the box in Theorem 5 not containing a solution.
Let (x , y) the corner of the box on Lk+d in Theorem 5. Since B+ b

d
> a

d
, then there is a solution

(x0 , y0) on Lk+d such that x < x0 < x + b
d
, and y < y0 < y + a

d
< y + B + b

d
. Therefore any

enlargement of the box not containing a solution can contribute at most
(
B + b

d

)
· b

d
square units

of area along the right side of the box and similarly along the left side. Thus, the total contribution
is 4

(
B + b

d

)
· b
d

square units of area. Therefore, the largest square area not containing a solution
is at most

B2 + 4B

(
b

d

)
+ 4

(
b

d

)2

=

(
B + 2

(
b

d

))2

.

�

3 Remarks on Theorems 5, 6

Remark 1. It is surprising to see the results in Theorems 5, 6 do not depend on c but only on a, b

and their greatest common divisor.

Remark 2. Let(a , b) = 1, then

B +
b

d
>

a

d

⇔ p

a+ b
+ b > a

⇔ p

a+ b
> a− b

⇔ p > a2 − b2.
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And this is satisfied for 0 < b < a <
√
p.

Thus if 0 < b < a <
√
b , (a, b) =1, there exist a box of size B = p

a+b
contains no solution

of ax− by ≡ c (mod p), and every box of size B = p
a+b

+ 2b contains a solution.
In particular if b = 1 and a =

[√
p
]

there is box of size B = p

[√p]+1
contains no solution of

ax − by ≡ c (mod p), and every box of size B = p

[√p]+1
+ 2 contains a solution and this is the

best possible.
We use the above remark to prove the next theorem.

Theorem 7. There are sets S, T with |S| = |T | =
[√

p
]
+ 3 and S + T = Zp.

Proof. Since
[√

p
]
+3 >

√
p +2 > p

[√p]+1
+2, then by the above remark, for any c ∈ Zp,∃ x0, y0

such that
[
√
p]x0 − y0 ≡ c (mod p) and 0 < x0, y0 ≤ [

√
p] + 3.

Let S =
[√

p
]
· I and T = −J where I = J =

{
x : 0 < x ≤

[√
p
]
+ 3
}
, then c ∈ S + T . �

It is clear that the result in Theorem 7 is best possible in the sense that any two subsets S, T
with cardinalities

[√
p
]

does not satisfy S + T = Zp.

Corollary 1. For every c there is a solution of
[√

p
]
x+y ≡ c (mod p) with 0 < x, y ≤

[√
p
]
+3.

Proof. Consider the square of size
[√

p
]
+ 3 cornered at the origin in the 4th quadrant, then it

contains a solution (x0 , y0) of
[√

p
]
x− y ≡ c (mod p) , y0 < 0.

Thus (x0,−y0) is a solution of
[√

p
]
x+ y ≡ c (mod p) with 0 < x0 , −y0 ≤

[√
p
]

+3. �

Corollary 2. The congruence x1x2x3 · · · xn + y1y2y3 · · · yn ≡ c (mod p) has a solution with

0 < xi, yi ≤ [
√
p] + 3.

Proof. Let (x0, y0) be a solution of
[√

p
]
x+ y ≡ c (mod p) , 0 < x0 , y0 ≤

[√
p
]
+ 3.

For n = 2, let x1 =
[√

p
]
, x2 = x0 and y1 = y0 , y2 = 1.

For n ≥ 3, let x1=
[√

p
]
, x2 = x0, x3 = · · · = xn = 1.

y1 = y0, y2 = y3 = · · · = yn = 1.

�
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