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On the congruence ax — by = ¢ (mod p)
and the finite field Z,
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Abstract: For prime p and 1 < a,b,c < p let V be the algebraic set of the congruence
ax — by = c¢(modp) in the plane. For an arbitrary box of size B we obtain a necessary and
a sufficient conditions on the size B in order for the box to meet V. For arbitrary subsets S, T'
of Z, we also obtain a necessary and a sufficient conditions on the cardinalities of .S, T" so that
S+T =2,
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1 Introduction
Let V' be the set of solutions of the congruence
ax — by = ¢ (modp) (1.1)

in the plane defined by V = { (z,y) € Z X Z : ax — by = ¢ (modp) } .
In this paper, we view the set of solutions V' of (1.1) in the plane as a set of lattice points on
a lines Ly defined by Ly : ax — by = ¢+ kp where k£ € Z. We show the existence of a box

of size B = ad—& contains no element of V, where d = (a,b), and we prove every box of size
__ dp b
B =2 +2 (%) meets V.

We also study the representation of the finite field Z, as a sum of two subsets .S, T". For such
two subsets we define S + T as S+ T = {s+t:se S, t €T}. It follows from the work
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of [3] that for any sets S, T with |S| - |T| > 2p, (25)(27T)+(25)(27T) = Z, and
(28)(2T)— (295)(2T) = Z,. In this paper we prove the existence of two subsets .S, T with
S| = &1 = |T|and S + T # Z,, and in contrary to that every two subsets S, T of Zp with

b
5
S| > 2land |T| > 2 satisfies S+ T = Z,,.

2 Theorems and proofs

Theorem 1. There are two subsets S, T of Z,with |S| = |T'| =2 and S+ T # Z,
Proof. Consider the congruence

r—y = p%l(modp) (2.1)
and the line Lo defined by Ly : z —y = 2. The 2 — intercept (22, 0) is a solution
of (2.1) on Ly. Let L_; be the line defined by L ;| : ©* —y = p%l —p = — (’%1) . The
Yy — intercept (O, 1%1) is a solution of (2.1) on L_;. Now consider the rectangle R determined
by the vertices (0,0), (%+,0), (0 ,2-) and (2%, 2£1) | then R contains no solution of (2.1). In
particular, there is a box of size B = %1 cornered at the origin and contains no solution of (2.1).
Let S={s:0<s<Zr}andT ={-t:0<t<Pl}thenc="2" ¢ S+T. O

The result in Theorem 1 is best possible as the next theorem suggests.

Theorem 2. Let S, T arbitrary subsets of Z,, if |S| > 2 and [T| > 22 then S+ T = Z,.
Proof. Ifc € Zy, let W = —T + ¢ = {—t+c:teT}, then |W| = |T| > L, therefore
SW # (. Then there is sp € S and wy € W such that —t, + ¢ = s for some ¢, € T.
Therefore c = sqg+tg € S+1T. O
Theorem 3. Every box of size B > ’%1 in the plane contains a solution of (1.1).

Proof. Let I be the projection of the box on the x — axis, and J be the projection on the y-
axis, let S =a-I = {ar:x€ltand T = —b-J = {~by:y € J}, then |S| > 2! and
T > 7%1, hence by Theorem 2 for every ¢ € Z, there exists ax € S and —by € T' such that
axr — by = c. O

Theorem 4. There exist a box of size B = ,/p — 1 contains no solution of (1.1).
Proof. Let S be the square definedby S : {z: 0 <z <p} x{y:0<y <p}.

Since (p—1) ([vp]+1) < (Vp—1) (/p+1) = p—1 < p, then the interval
(0, p) contains at least [\/]_o + 1 subintervals each of length \/p — 1, therefore the square .S
contains at least ( [\/ﬁ} + 1) > p subsquares each of size /p — 1, and since number of solu-
tions of (1.1) in the square is p — 1, then by pigeon-hole principle there is at least one subsquare
contains no solution of (1.1). O

Now we view the solutions of (1.1) in the plane as a set of lattice points on a lines L, defined
by Ly: ax — by = c+ kp where k € Z.
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If Ly is such a line, then the next line to the right is L. 4 defined by Ly, 4 : ax — by =
¢+ kp + dp, where d = (a,b) .

The horizontal distance H between the lines L and Ly 41s H = %p, the horizontal distance

between solutions on the line L, is h = g , and the vertical distance v is v = %.

d

Theorem 5. For every a, b, c there is a box of size B= a—fb contains no solution of (1.1).

Proof. For k € Z, and d divides ¢ + kp, where d = (a, b), consider the two lines Ly, Ly 4.

Let S the largest square of size B can be inscribed between these two lines. If (x, ‘”_Tf_kp) is

the corner of the square on L, then (x + B, ‘mz%kp — B) is the corner on L 4 and satisfies its

equation. Therefore

—c—k
MHB)_@(%_B):H@W)
(a+b)B=dp
_dp

Cat+b

U

Theorem 6. Let B be the size of the box obtained in Theorem 5, if B + g > 4, then any box of
size B + 2 (%) contains a solution of (1.1).
Proof. We are to find maximum enlargement of the box in Theorem 5 not containing a solution.

a

d
(o, Yo) on Ly, q such that z < xy < x + %, andy <yo<y+4<y+B+ %. Therefore any

Let (x , y) the corner of the box on L4 in Theorem 5. Since B + % > %, then there is a solution

enlargement of the box not containing a solution can contribute at most (B + g) . g square units

of area along the right side of the box and similarly along the left side. Thus, the total contribution
is4 (B + g) : % square units of area. Therefore, the largest square area not containing a solution

o)) - ()

3 Remarks on Theorems 5, 6

18 at most

Remark 1. It is surprising to see the results in Theorems 5, 6 do not depend on c but only on a, b
and their greatest common divisor.

Remark 2. Let(a , b) = 1, then

B+2s9
ta7d

S ——+b>a
a-+b

= >a—>

a+b
& p>a® -1
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And this is satisfied for ) < b < a < \/}_)

Thusif 0 < b < a < vb, (a, b) =, there exist a box of size B = - contains no solution

of ax — by = c(mod p), and every box of size B = _£+ 4 2b contains a solution.

In particular if b = 1 and a = [\/]7 ] there is box of size B = —%— contains no solution of
[vp]+1
ax — by = ¢ (mod p), and every box of size B = W + 2 contains a solution and this is the
best possible.

We use the above remark to prove the next theorem.

Theorem 7. There are sets S, T with |S| = |T| = [\/p] +3and S+ T = Z,.
Proof. Since [\/]_7} +3>/p+2 > —=— + 2, then by the above remark, for any ¢ € Z,, 3 x¢, yo

[ve]+1
such that
VPl xo — yo = ¢ (mod p) and 0 < xo,yo < [v/p] + 3.
Let S = [\/]_7} -]andT:—JWhereI:J:{x:0<x§ [\/]_7} +3},thenc€S+T. O

It is clear that the result in Theorem 7 is best possible in the sense that any two subsets S, T’
with cardinalities [,/p | does not satisfy S + T = Z,,.

Corollary 1. For every c there is a solution of [,/p] z+y = ¢ (mod p) with0 < z,y < [,/p] +3.
Proof. Consider the square of size [\/;T)} + 3 cornered at the origin in the 4* quadrant, then it
contains a solution (z , yo) of [\/p]  —y = c(mod p), y, < 0.

Thus (o, —yo) is a solution of [\/p] z + y = ¢ (mod p) with 0 < zo , —yo < [\/p] +3. O

Corollary 2. The congruence x1xoxs - - - T + Y1Y2y3 - - - Y = ¢ (mod p) has a solution with

0 <y <[Vp+3.

Proof. Let (x0,yo) be a solution of [\/p| z +y = c(modp), 0 <z, yo < [/P] + 3.
Forn =2,leta; = [\/p] , 20 =20 andy; =y, y2 = 1.
FornZS,letm:[\/ﬂ , Xo =X9, T3 = -+ =T, = 1.

Y1 =Y, Y2 =Yz =" "=y, = L
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