Notes on Number Theory and Discrete Mathematics Print ISSN 1310–5132, Online ISSN 2367–8275 Vol. 22, 2016, No. 1, 29–32

On the congruence $ax - by \equiv c \pmod{p}$ and the finite field Z_p

Anwar Ayyad

Department of Mathematics, AL-Azhar University – Gaza P. O. Box 1277, Gaza Strip, Palestine e-mail: anwarayyad@yahoo.com

Received: 14 June 2015 Revised: 25 December 2015 Accepted: 28 December 2015

Abstract: For prime p and $1 \le a, b, c \le p$ let V be the algebraic set of the congruence $ax - by \equiv c \pmod{p}$ in the plane. For an arbitrary box of size B we obtain a necessary and a sufficient conditions on the size B in order for the box to meet V . For arbitrary subsets S , T of Z_p we also obtain a necessary and a sufficient conditions on the cardinalities of S, T so that $S+T=Z_p$.

Keywords: Congruence, Lattices, Solutions. AMS Classification: 11D79, 11H06.

1 Introduction

Let V be the set of solutions of the congruence

$$
ax - by \equiv c \pmod{p} \tag{1.1}
$$

in the plane defined by $V = \{ (x, y) \in Z \times Z : ax - by \equiv c \pmod{p} \}.$

In this paper, we view the set of solutions V of (1.1) in the plane as a set of lattice points on a lines L_k defined by L_k : $ax - by = c + kp$ where $k \in \mathbb{Z}$. We show the existence of a box of size $B = \frac{dp}{dt}$ $\frac{dp}{a+b}$ contains no element of V, where $d = (a, b)$, and we prove every box of size $B = \frac{dp}{a+b} + 2 \left(\frac{b}{d}\right)$ $\frac{b}{d}$) meets *V*.

We also study the representation of the finite field Z_p as a sum of two subsets S, T . For such two subsets we define $S + T$ as $S + T = \{s + t : s \in S, t \in T\}$. It follows from the work

of [3] that for any sets S, T with $|S| \cdot |T| > 2p$, $(2S)(2T) + (2S)(2T) = Z_p$ and $(2 S) (2 T) - (2 S) (2 T) = Z_p$. In this paper we prove the existence of two subsets S, T with $|S| = \frac{p-1}{2} = |T|$ and $S + T \neq Z_p$, and in contrary to that every two subsets S, T of Z_P with $|S| \geq \frac{p+1}{2}$ and $|T| \geq \frac{p+1}{2}$ satisfies $S + T = Z_p$.

2 Theorems and proofs

Theorem 1. There are two subsets S, T of Z_p with $|S| = |T| = \frac{p-1}{2}$ $\frac{-1}{2}$ and $S + T \neq Z_p$. *Proof.* Consider the congruence

$$
x - y \equiv \frac{p - 1}{2} (mod \, p) \tag{2.1}
$$

and the line L_0 defined by $L_0: x - y = \frac{p-1}{2}$ $\frac{-1}{2}$. The x – *intercept* $\left(\frac{p-1}{2}\right)$ $\frac{-1}{2}$, 0) is a solution of (2.1) on L_0 . Let L_{-1} be the line defined by L_{-1} : $x - y = \frac{p-1}{2} - p = -(\frac{p+1}{2})$ $\frac{+1}{2}$). The $y-intercept (0, \frac{p+1}{2})$ $\frac{+1}{2}$) is a solution of (2.1) on L_{-1} . Now consider the rectangle R determined by the vertices $(0,0)$, $\left(\frac{p-1}{2}\right)$ $\frac{-1}{2},0\big)$, $\big(0\,\,\frac{p+1}{2}\big)$ $\frac{+1}{2}$) and $\left(\frac{p-1}{2}\right)$ $\frac{-1}{2}, \frac{p+1}{2}$ $\frac{+1}{2}$), then R contains no solution of (2.1). In particular, there is a box of size $B = \frac{p-1}{2}$ $\frac{-1}{2}$ cornered at the origin and contains no solution of (2.1). Let $S = \{s : 0 \le s < \frac{p-1}{2}\}$ and $T = \{-t : 0 \le t < \frac{p-1}{2}\}$ then $c = \frac{p-1}{2}$ $\frac{-1}{2}$ \notin $S + T$.

The result in Theorem 1 is best possible as the next theorem suggests.

Theorem 2. Let S, T arbitrary subsets of Z_p , if $|S| \ge \frac{p+1}{2}$ and $|T| \ge \frac{p+1}{2}$, then $S + T = Z_p$. *Proof.* If $c \in Z_p$, let $W = -T + c = \{-t + c : t \in T\}$, then $|W| = |T| \ge \frac{p+1}{2}$, therefore $S \cap W \neq \emptyset$. Then there is $s_0 \in S$ and $w_0 \in W$ such that $-t_0 + c = s_0$ for some $t_0 \in T$. Therefore $c = s_0 + t_0 \in S + T$.

Theorem 3. Every box of size $B \geq \frac{p+1}{2}$ $\frac{+1}{2}$ in the plane contains a solution of (1.1). *Proof.* Let I be the projection of the box on the $x - axis$, and J be the projection on the yaxis, let $S = a \cdot I = \{ax : x \in I\}$ and $T = -b \cdot J = \{-by : y \in J\}$, then $|S| \ge \frac{p+1}{2}$ and $T \geq \frac{p+1}{2}$ $\frac{+1}{2}$, hence by Theorem 2 for every $c \in Z_p$ there exists $ax \in S$ and $-by \in T$ such that $ax - by = c$.

Theorem 4. There exist a box of size $B = \sqrt{p} - 1$ contains no solution of (1.1). *Proof.* Let S be the square defined by $S: \{x : 0 < x < p\} \times \{y : 0 < y < p\}$.

Since $(\sqrt{p}-1)$ $(|\sqrt{p}|+1)$ $\langle (\sqrt{p}-1) (\sqrt{p}+1) = p-1 \langle p$, then the interval (0, p) contains at least $\lceil \sqrt{p} \rceil + 1$ subintervals each of length $\sqrt{p} - 1$, therefore the square S contains at least $\left(\sqrt{p}+1\right)^2 > p$ subsquares each of size $\sqrt{p}-1$, and since number of solutions of (1.1) in the square is $p - 1$, then by pigeon-hole principle there is at least one subsquare contains no solution of (1.1). \Box

Now we view the solutions of (1.1) in the plane as a set of lattice points on a lines L_k defined by L_k : $ax - by = c + kp$ where $k \in Z$.

If L_k is such a line, then the next line to the right is L_{k+d} defined by L_{k+d} : $ax - by =$ $c + kp + dp$, where $d = (a, b)$.

The horizontal distance H between the lines L_k and L_{k+d} is $H = \frac{dp}{dt}$ $\frac{dp}{a}$, the horizontal distance between solutions on the line L_k is $h = \frac{b}{d}$ $\frac{b}{d}$, and the vertical distance v is $v = \frac{a}{d}$ $\frac{a}{d}$.

Theorem 5. For every a, b, c there is a box of size $B = \frac{dp}{dt}$ $\frac{dp}{a+b}$ contains no solution of (1.1). *Proof.* For $k \in \mathbb{Z}$, and d divides $c + kp$, where $d = (a, b)$, consider the two lines L_k, L_{k+d} . Let S the largest square of size B can be inscribed between these two lines. If $\left(x, \frac{ax-c-kp}{b}\right)$ is b the corner of the square on L_k then $\left(x+B, \frac{ax-c-kp}{b}-B\right)$ is the corner on L_{k+d} and satisfies its equation. Therefore

$$
a(x + B) - b\left(\frac{ax - c - kp}{b} - B\right) = c + kp + dp
$$

$$
(a + b) B = dp
$$

$$
B = \frac{dp}{a + b}.
$$

 \Box

Theorem 6. Let B be the size of the box obtained in Theorem 5, if $B + \frac{b}{d} > \frac{a}{d}$ $\frac{a}{d}$, then any box of size $B + 2 \left(\frac{b}{d}\right)$ $\frac{b}{d}$) contains a solution of (1.1).

Proof. We are to find maximum enlargement of the box in Theorem 5 not containing a solution. Let (x, y) the corner of the box on L_{k+d} in Theorem 5. Since $B + \frac{b}{d} > \frac{a}{d}$ $\frac{a}{d}$, then there is a solution (x_0, y_0) on L_{k+d} such that $x < x_0 < x + \frac{b}{d}$ $\frac{b}{d}$, and $y < y_0 < y + \frac{a}{d} < y + B + \frac{b}{d}$ $\frac{b}{d}$. Therefore any enlargement of the box not containing a solution can contribute at most $(B + \frac{b}{a})$ $\frac{b}{d}$) \cdot $\frac{b}{d}$ $\frac{b}{d}$ square units of area along the right side of the box and similarly along the left side. Thus, the total contribution is $4\left(B+\frac{b}{d}\right)$ $\frac{b}{d}$) \cdot $\frac{b}{d}$ $\frac{b}{d}$ square units of area. Therefore, the largest square area not containing a solution is at most

$$
B^2 + 4B\left(\frac{b}{d}\right) + 4\left(\frac{b}{d}\right)^2 = \left(B + 2\left(\frac{b}{d}\right)\right)^2.
$$

3 Remarks on Theorems 5, 6

Remark 1. It is surprising to see the results in Theorems 5, 6 do not depend on c but only on a, b and their greatest common divisor.

Remark 2. Let(a, b) = 1, then

$$
B + \frac{b}{d} > \frac{a}{d}
$$

\n
$$
\Leftrightarrow \frac{p}{a+b} + b > a
$$

\n
$$
\Leftrightarrow \frac{p}{a+b} > a - b
$$

\n
$$
\Leftrightarrow p > a^2 - b^2.
$$

And this is satisfied for $0 < b < a < \sqrt{p}$.

 $\sqrt{2}$

Thus if $0 < b < a < \sqrt{b}$, $(a, b) = 1$, there exist a box of size $B = \frac{p}{a+1}$ $\frac{p}{a+b}$ contains no solution of $ax - by \equiv c \pmod{p}$, and every box of size $B = \frac{p}{a+b} + 2b$ contains a solution.

In particular if $b = 1$ and $a = \left[\sqrt{p}\right]$ there is box of size $B = \frac{p}{\sqrt{p}}$ $\frac{p}{\sqrt{p}+1}$ contains no solution of $ax - by \equiv c \pmod{p}$, and every box of size $B = \frac{p}{\sqrt{p}}$ $\frac{p}{\sqrt{p+1}}+2$ contains a solution and this is the best possible.

We use the above remark to prove the next theorem.

Theorem 7. There are sets S, T with $|S| = |T| = \lfloor \sqrt{p} \rfloor + 3$ and $S + T = Z_p$. *Proof.* Since $[\sqrt{p}] + 3 > \sqrt{p} + 2 > \frac{p}{\sqrt{p}}$ $\frac{p}{\sqrt{p}+1}$ + 2, then by the above remark, for any $c \in Z_p$, $\exists x_0, y_0$ such that √ √

$$
\sqrt{p}
$$
 $x_0 - y_0 \equiv c \pmod{p}$ and $0 < x_0, y_0 \leq [\sqrt{p}] + 3$.

Let $S = \lfloor \sqrt{p} \rfloor \cdot I$ and $T = -J$ where $I = J = \{x : 0 < x \leq \lfloor \sqrt{p} \rfloor + 3\}$, then $c \in S + T$.

It is clear that the result in Theorem 7 is best possible in the sense that any two subsets S, T with cardinalities $\left[\sqrt{p}\right]$ does not satisfy $S + T = Z_p$.

Corollary 1. For every c there is a solution of $[\sqrt{p}] x + y \equiv c \pmod{p}$ with $0 < x, y \leq [\sqrt{p}] + 3$. *Proof.* Consider the square of size $[\sqrt{p}] + 3$ cornered at the origin in the 4th quadrant, then it contains a solution (x_0, y_0) of $[\sqrt{p}] x - y \equiv c \pmod{p}, y_0 < 0.$

Thus $(x_0, -y_0)$ is a solution of $\left[\sqrt{p}\right] x + y \equiv c \pmod{p}$ with $0 < x_0$, $-y_0 \leq \left[\sqrt{p}\right] +3$.

Corollary 2. The congruence $x_1x_2x_3 \cdots x_n + y_1y_2y_3 \cdots y_n \equiv c \pmod{p}$ has a solution with

 $0 < x_i, y_i \leq [$ √ \overline{p} + 3.

Proof. Let (x_0, y_0) be a solution of $\left[\sqrt{p}\right] x + y \equiv c \pmod{p}$, $0 < x_0$, $y_0 \leq \left[\sqrt{p}\right] + 3$. For $n = 2$, let $x_1 = \left[\sqrt{p}\right]$, $x_2 = x_0$ and $y_1 = y_0$, $y_2 = 1$. For $n \ge 3$, let $x_1 = \lfloor \sqrt{p} \rfloor$, $x_2 = x_0, x_3 = \cdots = x_n = 1$.

$$
y_1 = y_0, y_2 = y_3 = \cdots = y_n = 1.
$$

 \Box

References

- [1] Ayyad, A., Cochrane, T. & Zheng, Z. (1996) The congruence $x_1x_2 \equiv x_3x_4 (mod p)$, the equation and mean values of character sums. *J. Number Theory*, 59, 398–413.
- [2] Bourgain, J., Katz N. & Tao, T. (2004) A sum-product estimate in finite fields and their applications, *Geom. Funct. Anal.* 14, 27–57.
- [3] Glibichuk, A. A. (2006) Combinatorial properties of sets of residues modulo a prime and the Erdős–Graham problem, *Mat. Zametki*, 79, 384-395 (in Russian), English transl.: *Math. Notes* 79, 2006, 556–365.