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Abstract: Let pn be the n-th prime number. The following limit is well-known
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Let k be a fixed but arbitrary nonnegative integer. In this note we prove the more general limit
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1 Main results

Let pn be the n-th prime number. The following limit is well-known (see [1], [4] and [5])

lim
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e
. (1)

In this note we generalize this limit. We have the following theorem.

Theorem 1. Let k be a fixed but arbitrary nonnegative integer. The following limit holds
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Proof: If k = 0, then the theorem is true (see (1)). Suppose that k is a positive integer. The prime
number theorem is

pi ∼ i log i

Therefore

log pi = log i+ log log i+ f(i) (i ≥ 1) (3)

where

f(i)→ 0 (4)

and we put log log 1 = 0.
Now, we have (see (3))

log
(
p
(1k)
1 p

(2k)
2 · · · p(nk)

n

)
=

n∑
i=1

ik log pi =
n∑

i=1

(
ik log i+ ik log log i+ f(i)ik

)
=

n∑
i=1

ik log i+ 2k log log 2 +
n∑

i=3

ik log log i+
n∑

i=1

f(i)ik (5)

The function xk log x is nonnegative and strictly increasing on the interval [1,∞). Consequently

n∑
i=1

ik log i =

∫ n

1

xk log x dx+O(nk log n) (6)

Note that the sum in the left side is a sum of rectangles of basis 1 and hight ik log i.
The function xk log log x is nonnegative and strictly increasing on the interval [e,∞). Conse-

quently

n∑
i=3

ik log log i =

∫ n

3

xk log log x dx+O(nk log log n) (7)

Note that the sum in the left side is a sum of rectangles of basis 1 and hight ik log log i.
We have (use integration by parts)∫ n

1

xk log x dx =
nk+1

k + 1
log n− 1

(k + 1)2
nk+1 +

1

(k + 1)2
(8)

On the other hand, we have (use integration by parts)∫ n

3

xk log log x dx =
nk+1

k + 1
log log n− 3k+1

k + 1
log log 3− 1

k + 1

∫ n

3

xk

log x
dx (9)

The L’Hospital’s rule gives

lim
x→∞

∫ x

3
tk

log t
dt

xk+1
= lim

x→∞

xk

log x

(k + 1)xk
= 0 (10)
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Therefore (10) gives

lim
n→∞

∫ n

3
xk

log x
dx

nk+1
= 0

That is ∫ n

3

xk

log x
dx = o

(
nk+1

)
(11)

Equations (9) and (11) give∫ n

3

xk log log x dx =
nk+1

k + 1
log log n+ o

(
nk+1

)
(12)

Given ε > 0, there exist n0 such that if n ≥ n0 we have |f(i)| < ε (see (4)). Therefore∣∣∣∣∣
n∑

i=1

f(i)ik

∣∣∣∣∣ ≤
n∑

i=1

|f(i)| ik ≤
n0−1∑
i=1

|f(i)| ik + ε

n∑
i=n0

ik ≤
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i=1

|f(i)| ik + ε

n∑
i=1

ik (13)

Now
n∑

i=1

ik =

∫ n

1

xk dx+O(nk) =
nk+1

k + 1
+ o(nk+1) (14)

Therefore (see (13) and (14)) from a certain value of n we have∣∣∣∣∑n
i=1 f(i)i

k

nk+1

∣∣∣∣ ≤ ∑n0−1
i=1 |f(i)| ik

nk+1
+ ε

∑n
i=1 i

k

nk+1
≤ ε

where ε is arbitrarily small. That is
n∑

i=1

f(i)ik = o(nk+1) (15)

Equations (5), (6), (8), (7), (12) and (15) give
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+ o(nk+1) (16)

Therefore (see (16) and (3)) we have
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That is, limit (2). �

The following limit is well known (see [1])

lim
n→∞

(12 · · ·n)
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n
= lim

n→∞

n
√
n!

n
=

1

e

We have the following generalization.
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Theorem 2. Let k be a fixed but arbitrary nonnegative integer. The following limit holds

lim
n→∞

(
1(1

k)2(2
k) · · ·n(nk)
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n
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e

(18)

Proof: The proof is as Theorem 1, but simpler and shorter. �

Let Pn be the n-th perfect power. In a previous article [2] we prove the limit

lim
n→∞

(P1P2 · · ·Pn)
1
n

Pn

=
1

e2
. (19)

In the following theorem we generalize this limit.

Theorem 3. Let k be a fixed but arbitrary nonnegative integer. The following limit holds

lim
n→∞
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Proof: Note that (see [3]) Pi ∼ i2 and consequently logPi = 2 log i+f(i) where f(i)→ 0. Now,
the proof is as Theorem 1, but simpler and shorter. �
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