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On a limit where appear prime numbers
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Abstract: Let p,, be the n-th prime number. The following limit is well-known
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Let k be a fixed but arbitrary nonnegative integer. In this note we prove the more general limit
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1 Main results

Let p,, be the n-th prime number. The following limit is well-known (see [1], [4] and [5])
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In this note we generalize this limit. We have the following theorem.
Theorem 1. Let k be a fixed but arbitrary nonnegative integer. The following limit holds
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Proof: If k = 0, then the theorem is true (see (1)). Suppose that k is a positive integer. The prime
number theorem is

p; ~ ilogi
Therefore
log p; = logi + loglogi + f(i) (t>1) 3)
where
f(i) =0 “)

and we put loglog 1 = 0.
Now, we have (see (3))
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The function z* log x is nonnegative and strictly increasing on the interval [1, o). Consequently
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Z i*logi = / 2*log x dx + O(n*logn) (6)
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Note that the sum in the left side is a sum of rectangles of basis 1 and hight i* log i.
The function z* log log z is nonnegative and strictly increasing on the interval [e, o). Conse-
quently

Z i*loglogi = / 2*loglog x dz + O(n*loglogn) @)
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Note that the sum in the left side is a sum of rectangles of basis 1 and hight i* log log i.
We have (use integration by parts)
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On the other hand, we have (use integration by parts)
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The L’Hospital’s rule gives
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Therefore (10) gives
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That is

Equations (9) and (11) give
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Given € > 0, there exist ng such that if n > ny we have | f(i)| < € (see (4)). Therefore
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Therefore (see (13) and (14)) from a certain value of n we have
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Equations (5), (6), (8), (7), (12) and (15) give
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Therefore (see (16) and (3)) we have
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That is, limit (2).
The following limit is well known (see [1])
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We have the following generalization.
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Theorem 2. Let k be a fixed but arbitrary nonnegative integer. The following limit holds
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Proof: The proof is as Theorem 1, but simpler and shorter. U

Let P, be the n-th perfect power. In a previous article [2] we prove the limit
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In the following theorem we generalize this limit.

Theorem 3. Let k be a fixed but arbitrary nonnegative integer. The following limit holds
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Proof: Note that (see [3]) P; ~ i and consequently log P; = 2log i+ f(i) where f(i) — 0. Now,
the proof is as Theorem 1, but simpler and shorter. U
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