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Abstract: In this note, we provide a combinatorial proof of a generalized recurrence formula
satisfied by the Stirling numbers of the second kind. We obtain two extensions of this formula, one
in terms of r-Whitney numbers and another in terms of q-Stirling numbers of Carlitz. Modifying
our proof yields analogous formulas satisfied by the r-Stirling numbers of the first kind and by
the r-Lah numbers.
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1 Introduction

By a partition of the set [n] = {1, 2, . . . , n}, we will mean a collection of pairwise disjoint
subsets, called blocks, whose union is [n]. The cardinality of the set of partitions of [n] having
exactly k blocks is given by the Stirling number of the second kind (see, e.g., [9, p. 33]), which
will be denoted here by S(n, k). The numbers S(n, k) satisfy a variety of identities and the reader
is referred to [5, Section 6.1] and [1, Chapter 7]. The S(n, k) have the following generalized
recurrence, which we were unable to find in the literature.

Theorem 1.1. If n, k ≥ 1 and 0 ≤ ` ≤ k − 1, then

S(n, k) =
n−k+`+1∑
i=`+1

n−i∑
j=k−`−1

(
n− i
j

)
`n−i−jS(i− 1, `)S(j + 1, k − `). (1.1)

Note that when ` = 1, formula (1.1) reduces to
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S(n, k) =
n−k+2∑
i=2

n−i∑
j=k−2

(
n− i
j

)
S(j + 1, k − 1) =

n−2∑
j=k−2

S(j + 1, k − 1)

n−j∑
i=2

(
n− i
j

)

=
n−1∑

j=k−1

(
n− 1

j

)
S(j, k − 1),

which is a well-known recurrence for S(n, k) (see, e.g., [5, Equation 6.15]). In this note, we
provide a combinatorial proof of formula (1.1). Furthermore, we establish two generalizations of
(1.1): namely, one involving the recently introduced r-Whitney number [4] and another involving
a q-Stirling number considered originally by Carlitz [3]. Modifying our proof yields analogous
formulas satisfied by the r-Stirling numbers of the first kind [2] and by the recently studied r-Lah
numbers [8].

2 An identity for r-Whitney numbers

The r-Whitney numbers of the second kind (see, e.g., [4, 7]), denoted by Wm,r(n, k), are defined
as the connection constants in the polynomial identities

(mx+ r)n =
n∑

k=0

Wm,r(n, k)mk(x)k, n ≥ 0, (2.1)

where (x)k = x(x − 1) · · · (x − k + 1) if k ≥ 1, with (x)0 = 1. Here, r ≥ 0 and m ≥ 1 are
integers, but may also taken to be indeterminates. Note that W1,0(n, k) = S(n, k) for all n and k.
Equivalently, the r-Whitney numbers are defined by the recurrence

Wm,r(n, k) = Wm,r(n− 1, k − 1) + (r +mk)Wm,r(n− 1, k), n, k ≥ 1, (2.2)

with Wm,r(n, 0) = rn and Wm,r(0, k) = δk,0 for all n, k ≥ 0. The formula for the ordinary
generating function is given in [4]:∑

n≥k

Wm,r(n, k)xn =
xk

(1− rx)(1− (r +m)x) · · · (1− (r +mk)x)
, k ≥ 0. (2.3)

We now establish the following recurrence formula for the r-Whitney numbers.

Theorem 2.1. If n, k ≥ 1 and 0 ≤ ` ≤ k − 1, then

Wm,r(n, k) =
n−k+`+1∑
i=`+1

n−i∑
j=k−`−1

mj−k+`+1

(
n− i
j

)
(r +m`)n−i−jWm,r(i− 1, `)S(j + 1, k − `).

(2.4)

Proof. We compute the generating function of the quantity on the right-hand side of (2.4). Re-
calling the well-known formulas∑

n≥k

S(n, k)xn =
xk

(1− x)(1− 2x) · · · (1− kx)
, k ≥ 1,
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and ∑
n≥j

(
n

j

)
xn =

xj

(1− x)j+1
, j ≥ 0,

we have

∑
n≥k

xn

(
n−k+`+1∑
i=`+1

n−i∑
j=k−`−1

mj−k+`+1

(
n− i
j

)
(r +m`)n−i−jWm,r(i− 1, `)S(j + 1, k − `)

)

=
∑
i≥`+1

Wm,r(i− 1, `)
∑

j≥k−`−1

S(j + 1, k − `)mj−k+`+1(r +m`)−jxi ·
∑
n≥i+j

(
n− i
j

)
((r +m`)x)n−i

=
∑
i≥`+1

Wm,r(i− 1, `)
∑

j≥k−`−1

S(j + 1, k − `)mj−k+`+1(r +m`)−jxi · ((r +m`)x)j

(1− (r +m`)x)j+1

= m−k+`
∑
i≥`+1

Wm,r(i− 1, `)xi−1 ·
∑

j≥k−`−1

S(j + 1, k − `) (mx)j+1

(1− (r +m`)x)j+1

= m−k+` x`∏`
i=0(1− (r +mi)x)

· (mx/(1− (r +m`)x))k−`∏k−`
i=1

(
1− mix

1−(r+m`)x

)
=

x`∏`
i=0(1− (r + im)x)

· xk−`∏k−`
i=1 (1− (r + (i+ `)m)x)

=
xk∏k

j=0(1− (r +mj)x)
,

by (2.3), which implies (2.4).

Note that formula (2.4) reduces to (1.1) when m = 1 and r = 0. We can also provide a
combinatorial proof of (2.4), but will need first to introduce some terminology.

Definition 2.2. Given 0 ≤ r ≤ m, by an r-partition of [m], we will mean one in which the
elements 1, 2, . . . , r belong to distinct blocks. If n, k, r ≥ 0, then let Πr(n, k) denote the set of all
r-partitions of [n+ r] having k + r blocks.

Recall that the cardinality of Πr(n, k) is given by the r-Stirling number of the second kind
introduced by Broder [2] and that Wm,r(n, k) reduces to the r-Stirling number when m = 1,
whence |Πr(n, k)| = W1,r(n, k). To obtain the combinatorial interpretation for Wm,r(n, k) that
will be used in the proof below, we color certain elements of [n+ r] within a member of Πr(n, k)

based off of their relative size within a block. In what follows, let [m,n] = {m,m+ 1, . . . , n} if
m ≤ n are positive integers, with [m,n] = ∅ if m > n.

Given a member of Πr(n, k), we will refer to the blocks containing an element of [r] as special
and the remaining blocks comprised exclusively of elements of [r + 1, r + n] as non-special.
Furthermore, we will refer to an element within a member of Πr(n, k) that is the smallest within
its block as minimal, and to all other elements as non-minimal.

Definition 2.3. Given an integerm ≥ 1, let Πm,r(n, k) denote the set of r-partitions of [n] having
k blocks wherein within each non-special block, every non-minimal element is assigned one of m
colors.

We now give a combinatorial proof of formula (2.4) above.
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Combinatorial proof of Theorem 2.1.

Proof. Let A(n, k) (= Am,r(n, k)) denote the cardinality of the set Πm,r(n, k). We first show that
Wm,r(n, k) = A(n, k) for all n and k. Note that A(0, k) = δk,0 follows from the definitions and
that A(n, 0) = rn since each element of [r + 1, r + n] within π ∈ Πm,r(n, 0) belongs to one of
r special blocks of π. We now count members of Πm,r(n, k) where n, k ≥ 1. Observe that there
are A(n− 1, k − 1) members of Πm,r(n, k) in which the element n+ r occupies a (non-special)
block by itself. On the other hand, if n + r belongs to a block containing at least one member of
[n + r − 1], then there are rA(n − 1, k) possibilities in which n + r belongs to a special block
and mkA(n − 1, k) possibilities in which n + r belongs to a non-special block (note that n + r

being non-minimal implies it is assigned one of m colors in the latter case). Combining the three
previous cases yields A(n, k) = A(n − 1, k − 1) + (r + mk)A(n − 1, k) if n, k ≥ 1, and thus
A(n, k) = Wm,r(n, k), by (2.2).

To complete the proof of (2.4), we argue that the right-hand side also counts the members of
Πm,r(n, k). Assume that the blocks within a member of Πm,r(n, k) are arranged from left to right
in ascending order of smallest elements. Given π ∈ Πm,r(n, k), suppose that the smallest element
of the (` + 1)-st non-special block from the left is r + i; note that ` + 1 ≤ i ≤ n− k + ` + 1 in
order for such a π to exist. Then there areWm,r(i−1, `) possibilities concerning placement of the
elements of [r+ i− 1]. Suppose further that there are exactly j elements of I = [r+ i+ 1, r+n]

lying within the non-special blocks of π to the right of and including the one containing r+i. Once
they have been selected in one of

(
n−i
j

)
ways, these elements, together with r+i, may be arranged

in k− ` non-special blocks of π in mj−k+`+1S(j+ 1, k− `) ways, where the factor of m accounts
for the coloring of the j − k + ` + 1 non-minimal elements within these blocks. Furthermore,
there are (r + m`)n−i−j ways in which to position and color the remaining n − i − j elements
of I , which may go in either special blocks or in the first ` non-special blocks. Considering all
possible i and j gives the cardinality of all members of Πm,r(n, k), which implies (2.4).

3 q-Stirling generalization

If k is a positive integer, then let [k]q = 1 + q + · · · + qk−1, where q is an indeterminate, with
[0]q = 0. Define the q-Stirling number Sq(n, k) by the recurrence

Sq(n, k) = Sq(n− 1, k − 1) + [k]qSq(n− 1, k), n, k ≥ 1, (3.1)

with initial values Sq(n, 0) = δn,0 and Sq(0, k) = δk,0 for all n, k ≥ 0. The numbers Sq(n, k)

were originally considered by Carlitz [3] and reduce to S(n, k) when q = 1. Equivalently, there
is the generating function formula (see, e.g., [10]):∑

n≥k

Sq(n, k)xn =
xk

(1− [1]qx)(1− [2]qx) · · · (1− [k]qx)
, k ≥ 1. (3.2)

We have the following q-generalization of formula (1.1).
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Theorem 3.1. If n, k ≥ 1 and 0 ≤ ` ≤ k − 1, then

Sq(n, k) =
n−k+`+1∑
i=`+1

n−i∑
j=k−`−1

q`(j−k+`+1)

(
n− i
j

)
[`]n−i−j

q Sq(i− 1, `)Sq(j + 1, k − `). (3.3)

Proof. Computing the generating function of the quantity on the right-hand side of (3.3), we have

∑
n≥k

xn

(
n−k+`+1∑
i=`+1

n−i∑
j=k−`−1

q`(j−k+`+1)

(
n− i
j

)
[`]n−i−j

q Sq(i− 1, `)Sq(j + 1, k − `)

)

=
∑
i≥`+1

Sq(i− 1, `)
∑

j≥k−`−1

q`(j−k+`+1)Sq(j + 1, k − `)[`]−j
q xi ·

∑
n≥i+j

(
n− i
j

)
([`]qx)n−i

=
∑
i≥`+1

Sq(i− 1, `)
∑

j≥k−`−1

q`(j−k+`+1)Sq(j + 1, k − `)[`]−j
q xi · ([`]qx)j

(1− [`]qx)j+1

= q`(`−k)
∑
i≥`+1

Sq(i− 1, `)xi−1 ·
∑

j≥k−`−1

Sq(j + 1, k − `) (q`x)j+1

(1− [`]qx)j+1

= q`(`−k) x`∏`
i=1(1− [i]qx)

· (q`x/(1− [`]qx))k−`∏k−`
i=1

(
1− q`[i]qx

1−[`]qx

)
=

x`∏`
i=1(1− [i]qx)

· xk−`∏k−`
i=1 (1− [i+ `]qx)

=
xk∏k

j=1(1− [j]qx)
,

by (3.2), where we have used the fact that [i+ `]q = [`]q + q`[i]q.

4 Two related formulas

Let S(n, k; r) = |Πr(n, k)| denote the r-Stirling number of the second kind, where we are using
the parametrization of Merris [6]. Letting m = 1 in formula (2.4) above implies

S(n, k; r) =
n−k+`+1∑
i=`+1

n−i∑
j=k−`−1

(
n− i
j

)
(r+`)n−i−jS(i−1, `; r)S(j+1, k−`), r ≥ 0. (4.1)

Analogous formulas can also be given for other r-numbers. Let s(n, k; r) denote the r-Stirling
number of the first kind [2, 6], which counts the permutations of [n+ r] into k+ r disjoint cycles
where the elements of [r] belong to different cycles. Let L(n, k; r) denote the r-Lah number
[8], which counts the number of partitions of [n + r] into k + r contents-ordered blocks where
the elements of [r] belong to different blocks. Let s(n, k) = s(n, k; 0) be the (signless) Stirling
number of the first kind and L(n, k) = L(n, k; 0) be the Lah number.

We have the following recurrence formulas satisfied by s(n, k; r) and L(n, k; r).

Theorem 4.1. If n, k ≥ 1, r ≥ 0, and 0 ≤ ` ≤ k − 1, then

s(n, k; r) =
n−k+`+1∑
i=`+1

n−i∑
j=k−`−1

(
n− i
j

)
(n+ r − j − 2)(n−i−j)s(i− 1, `; r)s(j + 1, k − `) (4.2)
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and

L(n, k; r) =
n−k+`+1∑
i=`+1

n−i∑
j=k−`−1

(
n− i
j

)
(n+2r+`−j−2)(n−i−j)L(i−1, `; r)L(j+1, k−`). (4.3)

Proof. These results may be obtained by making suitable modifications to the combinatorial proof
of Theorem 2.1 above so as to allow for ordering within blocks which we now describe. Applying
the same terminology as before, assume that the non-special cycles or ordered blocks are arranged
from left to right in ascending order of minimal elements. Then consider the smallest element,
r + i, of the (` + 1)-st non-special cycle or ordered block from the left. For (4.2), note that
then there are s(i − 1, `; r) possibilities concerning the placement of the elements of [r + i − 1]

and s(j + 1, k − `) possibilities regarding the positions of the j elements of I that comprise the
rightmost k − ` non-special cycles, together with r + i.

The other n − i − j elements of I , which we denote by a1 < a2 < · · · < an−i−j , must go
in the special cycles or in the first ` non-special cycles. As there are r + i − 1 elements already
within these cycles, there are r+ i− 1 choices regarding the position of a1. Subsequently adding
the elements a1 < a2 < · · · to these cycles, it follows that there are r+ i+ t−2 choices regarding
the position of at for 1 ≤ t ≤ n− i− j. Thus, there are

n−i−j∏
t=1

(r + i+ t− 2) = (n+ r − j − 2)(n−i−j)

possibilities concerning the placement of these elements. Considering all possible i and j then
gives (4.2). Similar reasoning applies to (4.3) except that there are 2r + ` + i + t − 2 choices
regarding the position of the element at for each t since now all possible orderings of elements
within a block are allowed.

Taking r = 0 in (4.2) and (4.3) gives analogues of (1.1) for s(n, k) and L(n, k), respectively.
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