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On some q-Pascal’s like triangles
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Abstract: We consider q-analogs of Pascal’s like triangles, which were studied by Atanassov in
a series of papers.
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Atanassov [2, 3] introduced and studied new types of Pascal’s like triangles, which were partly
motivated by [4, 6, 7]. In a subsequent series of papers appearing in the same journal, Atanassov
derived further properties of these triangles and showed connections to various well-known se-
quences of numbers. In this paper, we study q-analogs of these new types of Pascal’s like triangles
as described in [2, 3]. As a paradigmatic example, we construct the following infinite q-triangle

1

1 q+ 1 1

1 q + 1 (q2 + 1)(q+ 1) q + 1 1

1 q + 1 (q2 + 1)(q + 1) (q3 + 1)(q2 + 1)(q+ 1) (q2 + 1)(q + 1) q + 1 1

which is a q-analog of the first triangle given in [2]. Note that the ith element in the middle
column is given by

∏i
k=1(q

k + 1) =
∏i−1

k=0(1 + qk+1), for i ≥ 0, and reduces to 2i for q → 1.
In the general case, let the elements of the infinite q-triangle be

a00
a10 a11 a12

a20 a21 a22 a23 a24
a30 a31 a32 a33 a34 a35 a36

where aij are arbitrary real (or complex) numbers, and for every i = 0, 1, 2, . . . and
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• for every j such that 1 ≤ j ≤ i, aij = qjai(j−1) + a(i−1)(j−1);

• for every j such that i ≤ j ≤ 2i− 1, aij = q2i−jai(j+1) + a(i−1)(j−1).

Clearly, for q → 1, this recurrence relations reduce to those of the Pascal’s like triangles [2, 3].
As in the undeformed case studied by Atanassov, the triangle is symmetric around its middle
column, and one may regard the elements ai0 (i ≥ 0) on the left (and right) boundary diagonal as
“initial values”, determining the entire q-triangle through the defining recurrences.

We now give an expression for an arbitrary element aij in terms of the elements ai0. It is a
q-analog of1 [2, Lemma 2].

Proposition 1. Let the infinite sequence {ci}i≥0 of arbitrary real (or complex) numbers be given,
and let, for every i ≥ 0, ai0 = ai(2i) = ci. Then one has, for all 1 ≤ j ≤ i, that

aij = ai(2i−j) =

j∑
k=0

q(
k+1
2 )
(
j

k

)
q

ci−j+k.

In particular, the elements of the middle column are given by

aii =
i∑

k=0

q(
k+1
2 )
(
i

k

)
q

ck.

Now, we present two examples for the above proposition. To do that, we use the fact that

n−1∏
k=0

(1 + qkt) =
n∑

k=0

q(
k
2)
(
n

k

)
q

tk. (1)

Example 2. Let us choose ci = qmi, that is, ai0 = ai(2i) = qmi. then the middle column in the
q-triangle is given by

aii =
i∑

k=0

q(
k
2)
(
i

k

)
q

q(m+1)k =
i−1∏
k=0

(1 + qk+m+1).

In the special case m = 0 one has ci = 1, that is, ai0 = ai(2i) = 1, and one recovers the q-triangle
displayed at the beginning.

Example 3. If we set ai0 = ai(2i) = [i+ 1]q =
1−qi+1

1−q
, then the middle column in the q-triangle is

given by

aii =
i∑

k=0

q(
k
2)
(
i

k

)
q

qk + q2[i]q

i−1∑
k=0

q(
k
2)
(
i− 1

k

)
q

q2k

=
i−1∏
k=0

(1 + qk+1) + q2[i]q

i−2∏
k=0

(1 + qk+2).

1Note, however, that there is a typo in [2, Lemma 2].
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By some straightforward manipulations, one derives from this formula that

a(i+1)(i+1) = (1 + qi+1)aii + (1 + qi+1)qi+2

i−2∏
k=0

(1 + qk+2).

For q → 1, one obtains for the undeformed triangle associated to ai0 = ai(2i) = i + 1 that
a(i+1)(i+1) = 2aii + 2i, as observed by Atanassov (last triangle in [2], note that the shift in
the power of 2 stems from the fact that Atanassov’s numbering starts with i = 1, whereas our
numbering starts with i = 0).

Let us return to the general case.

Theorem 4. Let the infinite sequence {ci}i≥0 of arbitrary real (or complex) numbers be given,
and let, for every i ≥ 0, ai0 = ai(2i) = ci. Then the generating function for the elements of the
middle column is given by ∑

i≥0

aiit
i =

∑
k≥0

q(
k+1
2 )ckt

k∏k
i=0(1− qit)

.

Proof. By Proposition 1, we have that

∑
i≥0

aiit
i =

∑
i≥0

(
i∑

k=0

q(
k+1
2 )
(
i

k

)
q

ck

)
ti =

∑
k≥0

q(
k+1
2 )

(∑
i≥0

(
i+ k

k

)
q

ti

)
ck.

By the fact that
1∏n−1

k=0(1− qkt)
=
∑

k≥0

(
n−1+k

k

)
q
tk, we obtain that

∑
i≥0

aiit
i =

∑
i≥0

(
i∑

k=0

q(
k+1
2 )
(
i

k

)
q

ck

)
ti =

∑
k≥0

q(
k+1
2 )ckt

k∏k
i=0(1− qit)

,

as required. �

Above, we prescribed the elements on the left (and right) boundary diagonal and determined
the remaining elements of the q-triangle using the defining recurrences, in particular the elements
of the middle column. It is also possible to turn the perspective and prescribe the elements of the
middle column. In the case q = 1, Atanassov [2, 3] studied this relation between these sequences
of elements for several well-known sequences of numbers. By induction, we obtain the following
q-analog of his result [2, Page 33].

Proposition 5. Let the infinite sequence {di}i≥0 of arbitrary real (or complex) numbers be given,
and let, for every i ≥ 0, aii = di. Then, for all 0 ≤ j ≤ i− 1, one has that

aij = ai(2i−j) = qj−(
i+1
2 )

i−j∑
k=0

(−1)kq(
k
2)
(
i− j

k

)
q

di−k.

Next, we present some examples for the above proposition, where we use (1).
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Example 6. If one has in the middle column the consecutive q-numbers (for q = 1, see [2, Page
33]), that is, di = [i+ 1]q =

1−qi+1

1−q
, the elements on the left and right diagonal must be

ai0 = ai(2i) = q−(
i+1
2 )

i∑
k=0

(−1)kq(
k
2)
(
i

k

)
q

[i+ 1− k]q

= q−(
i+1
2 )

i∑
k=0

(−1)kq(
k
2)
(
i

k

)
q

+ q1−(
i+1
2 )

i∑
k=0

(−1)kq(
k
2)
(
i

k

)
q

[i− k]q

= q−(
i+1
2 )

i∑
k=0

(−1)kq(
k
2)
(
i

k

)
q

+ [i]qq
1−(i+1

2 )
i−1∑
k=0

(−1)kq(
k
2)
(
i− 1

k

)
q

= q−(
i+1
2 )

i−1∏
k=0

(1− qk) + [i]qq
1−(i+1

2 )
i−2∏
k=0

(1− qk),

which implies that a00 = 1, a10 = 1, and ai0 = 0 for all i ≥ 2. Thus, the sequence of elements
1, 1, 0, 0, 0, . . . on the boundary diagonals is the same as in the case q = 1.

Example 7. If one has in the middle column the consecutive squares of the q-numbers (for q = 1,
see [2, Page 33]), that is, di = [i+ 1]2q , the elements on the left and right diagonal must be

ai0 = ai(2i) =q−(
i+1
2 )

i∑
k=0

(−1)kq(
k
2)
(
i

k

)
q

[i+ 1− k]2q

=q−(
i+1
2 )

i∑
k=0

(−1)kq(
k
2)
(
i

k

)
q

+ 2q1−(
i+1
2 )

i∑
k=0

(−1)kq(
k
2)
(
i

k

)
q

[i− k]q

+ q−(
i+1
2 )

i∑
k=0

(−1)kq(
k
2)
(
i

k

)
q

[i− k]2q,

which, by the previous example, implies that

ai0 = ai(2i) = q−(
i+1
2 )

(
i−1∏
k=0

(1− qk) + (1 + 2q)[i]q

i−2∏
k=0

(1− qk) + [i]q[i− 1]q

i−3∏
k=0

(1− qk)

)
,

that is, a00 = 1, a10 = 1+2q
q

, a20 = 1+q
q3

and ai0 = 0 for all i ≥ 3. For q → 1, the sequence of
elements on the diagonals becomes 1, 3, 2, 0, 0, 0, . . . , as mentioned in [2].

Example 8. If one has in the middle column the consecutive inverses of the q-numbers, that is,
di = [i+ 1]−1

q , the elements on the left and right diagonal must be

ai0 = ai(2i) = q−(
i+1
2 )

i∑
k=0

(−1)kq(
k
2)
(
i

k

)
q

1

[i+ 1− k]q

=
1

q(
i+1
2 )[i+ 1]q

i∑
k=0

(−q)−kq(
k+1
2 )
(
i+ 1

k + 1

)
q

=
(−1)i−1

[i+ 1]q

(
i∏

k=0

(1− qk−1)− 1

)
,

that is, a00 = 1, ai0 =
(−1)i

[i+1]q
for all i ≥ 1.
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In analogy to the above Theorem 4, it is possible to express the generating function for the
elements on the boundary diagonals in terms of the elements di of the middle column. Since the
elements on the right diagonal equal the elements on the left diagonal, it suffices to consider the
former.

Theorem 9. Let the infinite sequence {di}i≥0 of arbitrary real (or complex) numbers be given,
and let, for every i ≥ 0, aii = di. Then the generating function for the elements on the left
diagonal is given by ∑

i≥0

ai0t
i =

∑
j≥0

qj+1djt
j∏j+1

k=1(t+ qk)
.

Proof. By Proposition 5, we have that

∑
i≥0

ai0t
i =

∑
i≥0

(
q−(

i+1
2 )

i∑
k=0

(−1)kq(
k
2)
(
i

k

)
q

di−k

)
ti,

which is equivalent to

∑
i≥0

ai0t
i =

∑
j≥0

∑
i≥0

(
(−1)i

(
i+ j

i

)
q

ti

q(j+1)i

)
q(

j+1
2 )−(j+1)jdjt

j.

By the fact that 1∏n−1
k=0 (1−qkt)

=
∑

k≥0

(
n−1+k

k

)
q
tk, we obtain that

∑
i≥0

(−1)i
(
i+ j

i

)
q

ti

q(j+1)i
=

j+1∏
k=1

1

1 + q−kt
= q(

j+2
2 )

j+1∏
k=1

1

t+ qk
.

Thus, ∑
i≥0

ai0t
i =

∑
j≥0

qj+1djt
j∏j+1

k=1(t+ qk)
,

as required. �

Atanassov [3] considered as a particular sequence the Fibonacci numbers Fn. On the one
hand, one may choose the sequence ci = Fi and prescribe them on the left and right diagonal,
that is, ai0 = ai(2i) = Fi, and determine the middle column. Atanassov mentioned without proof
that aii = F2i. In fact, using the second equation of Proposition 1, one finds for q → 1 that

aii =
i∑

k=0

(
i

k

)
Fk = F2i,

using in the second equation a well-known relation for the Fibonacci numbers (see, e.g., [1]).
In a similar fashion, one can prescribe the Fibonacci numbers on the middle column, that is,
aii = Fi and determine the elements on the diagonal. Atanassov mentioned without proof that
ai0 = (−1)i+1Fi, for i ≥ 1. Using Proposition 5 for q → 1 with di = Fi, one finds that

ai0 =
i∑

k=0

(−1)k
(
i

k

)
Fi−k = (−1)i+1Fi,
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using in the second equation another well-known relation for the Fibonacci numbers. Now, it
seems to be interesting to consider a q-analog of this situation. A q-analog of the Fibonacci
numbers satisfying F0(q) = 0, F1(q) = 1, and Fn+1(q) = Fn(q) + qn−1Fn−1(q) was considered
by Schur [8] (see also [1, 5]). The first study would be to let ai0 = ai(2i) = Fi(q) and try to find a
relation between aii and F2i(q), generalizing the relation of the undeformed case; conversely, the
second study would be to let aii = Fi(q) and try to find ai0.
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