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Abstract: The structure of the ‘Golden Ratio Family’ is consistent enough to permit the 

primality tests developed for ϕ5 to be applicable. Moreover, the factors of the composite 

numbers formed by a prime subscripted member of the sequence adhere to the same pattern as 

for ϕ5. Only restricted modular class structures allow prime subscripted members of the 

sequence to be a sum of squares.  Furthermore, other properties of ϕ5 are found to apply to 

those other members with structural compatibility. 
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1 Introduction 

The analysis of the structure of the Golden Ratio family {ϕa} can generate sets of generalized 

Fibonacci sequences [1, 9, 16]. Following on from a study of Fibonacci primes of the first 

member (a = 5) of this ‘family’ [3–8], obvious questions are:  

• Do the generalized Fibonacci primes thus generated have properties similar to those of 

the ordinary Fibonacci sequence? 

• Do the primality tests for the ordinary Fibonacci sequence apply more generally? 

2 Calculations 

We have previously [9] shown that the modular-ring structure is critical in the formation of the 

Golden Ratio family of generalized Fibonacci sequences, which are generated by 
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and with initial conditions )1(
a

Fϕ  
= )2(

a
Fϕ  

= 1, and where r1 is the row of 441 Za ⊂∈ , the 

modular ring displayed in Table 1. 

 

Row 

ri ↓ 

Class 

i  → 
40  41  42  43  Comments 

0 0 1 2 3 irN i += 4
 

1 4 5 6 7 even 40 , 42  

2 8 9 10 11 ( )2,n nN N ∈ 40  

3 12 13 14 15 odd 41 , 43 ; 2nN ∈ 41  

Table 1. Classes and rows for Z4 

The class 441 Z⊂ has many unique features [11]. For example, for odd integers only those 

in this class can equal a sum of squares and even powers as in Table 1. Because of the power 

restriction in regions where even powers are plentiful there is ‘more room’ in class 43  for 

primes, an anomaly noted in [14]. 

All 41)( ∈paϕ  (p prime) could be a sum of squares. When a = 5, r1 = 1 for a sum of 

squares in the well-known form [11, 12] 

 
22

2

1

2

1 −+ += pp FFFp  (2.3) 

In Section 4, we shall consider other Fibonacci sequences with this. We note that when r1 

is odd the parity structure of the sequences conforms to the pattern odd – odd – even – odd – 

odd – even …, but when r1 is even we get odd only in the sequence (Table 2), a fact which 

follows from Table 1 and Equation (2.1). 

 

a r1 Class of r1 

Parity structure 

of ( )a nϕϕϕϕ  

 

37 

 

9 

 

41  

 

ooe 

5 1 41  ooe 41 10 42  ooo 

13 3 43  ooe 53 13 41  ooe 

17 4 40  ooo 57 14 42  ooo 

29 7 43  ooe 61 15 43  ooe 

Table 2. Parity structure of )(naϕ
  

[o: odd; e: even] 
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When an element of any sequence is at a point where n = p (prime), the class of r1 

determines the class of )( paϕ as in Table 3 where it is clear that the row of 41∈a dominates the 

characteristics of each sequence. 

 

Class of r1 Class of ( )a pϕϕϕϕ  a 

44 1,0  all 41  5, 17, 37, 53, ... 

43  ...3131 4444  13, 29, 61 

42  all 43  41, 57, ... 

Table 3. Class of )( paϕ  

For the first member of the Golden Ratio family, a = 5, and when n is a prime p, )( pF
aϕ

can also be prime [17].  When n ≠ p, no prime is formed except for p = 3. This seems to apply 

for all members of the Golden Ratio family of Fibonacci sequences.  An interesting structural 

feature is that when )(, pap aϕ=
 
is always composite with the smallest factor equal to a 

(Table 4). 

 

a = p ( )ϕa
F p  Factors 

5 5 5 × 1 

13 14209 13 × 1093 

17 2135149 17 × 125597 

29 77433768659591 29 × 2670129953779 

37 34299715799234725561 37 × 927019345925262853 

Table 4. Factors when p = a 

3 Examples of primes in sequences for a = 13, 17 

The prime and composite integers generated for a = 13 (r1 odd) and a = 17 (r1 even) are set out 

in Tables 5 and 6 where 

 Factors of 1±= kpN p  (3.1) 

It is found that the same criteria for distinguishing primes and composites when a = 5 

[3–8] also apply for higher members of the Golden Ratio family.   

For a = 5, k is often equal to 2 [5], and this is the case for 
13

(19)Fϕ  in Table 5. These results 

suggest that (3.1) is general for the family. 
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p 
13

( )ϕF p  c/

p 
k Factors 

17
( )ϕF p  c/

p 
k Factors 

3 4 c 2 2 × 2 5 p – – 

5 19 p – – 29 p – – 

7 97 p – – 181 p – – 

11 2683 p – – 7589 p – – 

13 14209 c 84(+) 
13 1093 =  

84p + 1 
49661 c 

4(+1) 

72(+1) 

53 = 4p + 1 

937 = 72p + 1 

17 399331 c 
6(+1) 

228(+1) 

103 = 6p + 1 

3877 = 228p + 1 
2135149 c 7388(+1) 

17 

125597 =  

7388p + 1 

19 2117473 c 

2(–) 

8(–) 

20(–) 

37 = 2p – 1 

151 = 8p – 1 

379 = 20p – 1 

14007941 c 
2(–1) 

19926(–1) 

37 = 2p–1 

378593 =  

19926p – 1 

 Table 5. Factors of Np = kp ± 1 (a = 13) Table 6: Factors of Np = kp ± 1 (a = 17) 

4 Sum of squares 

The structure of the various sequences of the Golden Ratio family suggests that only 

{ }441 0 ,1r ∈  will have all  41)( ∈paϕ
 
(Table 3) and these can equal a sum of squares; that is, 

22)( yxpa +=ϕ . The (x, y) couples for )(5 pϕ
 
may be calculated from Equation (2.1) whereas, 

in general, the ),()( yxpaϕ
 
couples may be calculated from (x odd, y even) [10]: 

 ( ) .,)(2, 2

2
1 yxAApFAyx

a
+=−±= ϕ  (4.1) 

The upper limit for A is )(2 pF
aϕ and when )( pF

aϕ  is prime it is close to )(2 pF
aϕ .  

Moreover, A*, the right-end-digit (RED) of A [10, 13] is restricted so that (x, y) estimates are 

easier to find (Table 7). 

 

*( )
a

pϕϕϕϕ  A* 

1 1, 9 

3 1, 5, 9 

7 3, 5, 7 

9 3, 7 

Table 7. REDs for A 

Composite numbers either have one (x, y) couple with common factors or the same 

number as the number of factors, but primes have only one (x, y) couple with no common 

factors (Table 8). 
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p 17 ( )pϕϕϕϕ  Status x, y Factors 

3 5 p 1, 2 – 

5 29 p 5, 2 – 

7 181 p 9, 10 – 

11 7589 p 65, 58 – 

13 49661 c 181, 130 

85, 206 

 

53 × 937 

17 2135149 c 1165, 882 

1443, 230 

 

17 × 125597 

19 14007941 c 2929, 2330 

2015, 3154 

 

37 × 378593 

Table 8. Numbers of factors associated with )(17 pϕ  

It is significant that the odd and even (x, y) in Table 8 are elements of the classes 4 4
1 , 2 , 

respectively, but for those )( paϕ
 
with  41 3∈r  (for example, a = 13, 29, 61) there are x, y 

couples alternatively, that is, when .1)( 4∈paϕ
 
However, if the factors are in class 43 , then 

x, y couples do not form. When there is an odd number of factors some must be in class 41  

since 444 133 ∈  but  4444 3333 ∈ . Thus, for )(17 pϕ ,  ( ) ( )( )1 1
17 172 2

( 1) , 2 1x p y pϕ ϕ= + = − . For 

instance, for )13(17ϕ , ( ) ( )17 177 , 2 6x yϕ ϕ= =
 
which should be compared with (2.3). 

5 Sequences structurally compatible with    ϕϕϕϕ5 

These have the same parity structure and r1 of a is an element of class .14   

(a) The first of these is )(37 pϕ (Table 9). The factors are in class .14  They conform with 

(3.1) and the x, y couples are ( ) ( )( )1 1
37 372 2

( 1) , 3 1x p y pϕ ϕ= + = −
 
rather than (2.3). 

 

p 37 ( )pϕϕϕϕ  Factors 
Class of 

factors 

k 

(3.1) 
x, y 

5 109(p) – – – 3, 10 

7 1261(c) 13 × 97 
41 41  13 = 2p – 1 

97 = 14p – 1 

19, 30 

35, 6 

11 185329(c) 241 × 769 
41 41  241 = 22p – 1 

769 = 70p – 1 

327, 280 

423, 80 

13 2295721(p) – – – 1261, 840 

Table 9. x, y couples for )(37 pϕ  
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(b) The second of these is ϕ53(p) (Table 10). For the smallest p values the ϕ53(p) 

integers are composite, and the factors do not always fall in class 41 . Moreover, only 

a modified form of Equation (2.3) holds. Clearly, changes in the structure lead to 

more complex systems. 

  

p 53( )pϕϕϕϕ  Factors 
Class of 

factors 

k 

(3.1) 
x, y 

5 209 11 × 19 
43 43  





−=

+=

1419

1211

p

p
 

– 

7 3277 29 × 113 41 41  





+=

+=

116113

1429

p

p
 

26, 51 

19, 54 

11 881453 331 × 2663 
43 43  





+=

+=

12422663

130331

p

p
 

– 

Table 10. x, y couples for )(53 pϕ  

6 a as a composite element of 41  

Here the same structural characteristics occur as with primes in Section 2. The rows of

4259 2, ∈ϕϕ so that 4259 3)(),( ∈pp ϕϕ
 
and cannot form a sum of squares (Tables 8, 9). While

9ϕ
 
produces many primes, the higher a values only contain a scatter of primes (Table 11).  The 

factors of prime positioned numbers satisfy Equation (3.1). 

 

p ( ) ∈ 49 3pϕϕϕϕ  ( )∈ 421
1pϕϕϕϕ  ( ) ∈ 425 3pϕϕϕϕ  ( )∈ 433 1pϕϕϕϕ  

r1 2 5 6 8 

3 3(p) 6 = 2 × 3 7(p) 9 = 3 × 3 

5 11(p) 41(p) 55 = 5 × 11 

5, 11 = 2p + 1 

89(p) 

7 43(p) 301 = 7 × 43 

7, 43 = 6p + 1 

463(p) 937(p) 

11 683(p) 17621 = 67 × 263 

67 = 6p + 1 

263 = 24p – 1 

35839(p) 113993 = 11 × 43  × 241 

11, 43 = 4p – 1 

241 = 22p – 1 

13 2731(p) 136681 = 103 × 1327 

103 = 8p – 1 

1327 = 102p + 1 

32053 = 79 × 4057 

79 = 6p + 1 

4057 = 312p + 1 

1282969 = 261 × 491559 

261 = 20p + 1 

491559 = 37812p + 3 

17 48691(p) 8275601(p) 25854247(p) 164643641(p) 

19 174763(p) 164457461(p) 232557151 = 419 × 555029 

419 = 22p + 1 

555029 = 29212p + 1 

1869986953(p) 

Table 11. Some factors of prime positioned numbers [r1 is a row of a] 
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6 Final comments 

The closer the structures of the members of the golden ratio family are to one another the more 

similarities there will be.  For example, when 41∈aϕ  and { }441 1,0∈r  the more similarities 

there will be, particularly for the primality tests developed for 5ϕ [3–8].  The classes of )(naϕ

and 
1r also classify the sums of squares (Tables 2, 3, 8), and the structure is paramount for 

analysis of the infinity of sequences arising from Equations (2.1) and (2.2). 

Another feature of 5ϕ found to be important [5, 12] is that the triple (Fp+1, Fp, Fp–1) has 

either Fp+1 or Fp–1 divisible by p. Furthermore, the other two members of the triple ±1 are also 

divisible by p, but if p = a, then Fp is divisible by p (Tables 4 and 12). This divisibility feature 

permits a check on the accuracy of elements of the sequence when approximating them by the 

power of the relevant golden ratio or to reduce the triples to their primitive forms [3]. 

• For a = 5, 5ϕ , p|Fp+1 or p|Fp–1 can be predicted, but when a > 5 this prediction is more 

complex, though commonly p|Fp+1 and when a is composite the divisibility is more 

consistent.   

• For instance, for ,9ϕ only )1(| 9 −pp ϕ  occurs, while for )1(|, 3333 +pp ϕϕ is preferred.   

• For )7(29ϕ  none of the triples is divisible by 7, and  

• for )13(53ϕ none is divisible by 13.    

Apparently when r1 = p (for ,29ϕ
 
r1 = 7 and for ,53ϕ

 
r1 = 13) none of the triples is divisible 

by the prime if it equals r1. 

 

Table 12. p′; p′|Fp  where +: p′|ϕp(p′+1);  –: p′|ϕp(p′–1)
 

The interested reader may enjoy the challenge of extending these results to examine 

Havil’s claim that the Golden Ratio is the world’s most irrational number and the first of what 

he calls ‘awkward’ numbers [2] and whether there are similar families of meta-Fibonacci 

sequences such as [15] 

 
21 1 −− −−− +=

nn FnFnn FFF  (7.1) 

with the usual initial conditions.  

p′′′′ ϕϕϕϕ13(p′′′′) ϕϕϕϕ17(p′′′′) ϕϕϕϕ29(p′′′′) ϕϕϕϕ37 (p′′′′) 

5
 

+ + – + 

7 + + – – 

11 + + + – 

13 p – – + 

17 – p + + 

19 + – + + 

23 – + – + 

29 – + p + 

31 + + + + 
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