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1 Introduction

Let I ⊂ R be an open interval. An application M : I × I → I is called a mean, if

min{x, y} ≤M(x, y) ≤ max{x, y} for x, y ∈ I.

Let J ⊂ I be another open interval and M,N : J × J → J be two given means such that
N(J × J) ⊂ I.

A function f : J → I is called an (M,N)-convex (concave) function, if

f(M(x, y)) ≤ (≥)N(f(x), f(y)) for all x, y ∈ J.

When M = N, then f is called an M -convex function. M -convex functions have been
introduced and studied for the first time in 1997 by J. Matkowski and J. Rätz ([2, 3]), while the
particular case M = L, where L is the logarithmic mean have been studied later by J. Matkowski
[4], Z. Kominek and T. Zgraja [9], and T. Zgraja [10].
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The general (M,N)-convex functions were introduced in 1998 by J. Sándor [7], who studied
also the case when N is an integral mean.

The aim of this paper is to point out some new properties of general (M,N)-convex functions,
when M and N satisfy certain conditions. Particularly, when N = A = arithmetic mean, or
N = G = geometric mean, continuity properties will be offered. These extend earlier known
results.

2 Definitions and notations

Let a, b > 0. Then the arithmetic and geometric means of a and b are defined by A = A(a, b) =
a+ b

2
; G = G(a, b) =

√
ab. The logarithmic mean is L = L(a, b) =

b− a
log b− log a

(a 6= b);

L(a, a) = a; while the identric mean is I =
1

e

(
bb/aa

)1/(b−a)
(a 6= b); I(a, a) = a. For many

properties of the logarithmic and identric means, see [1], [6], [8] (we note that I(a, b) should not
be confused with the interval I).

A common generalization of A and G are the power means, defined by Ap = Ap(a, b) =(
ap + bp

2

)1/p

(p 6= 0); A0 = G. The integral mean of a function f : I → R is given by

I(a, b) =
1

b− a

∫ b

a

f(x)dx (a 6= b), I(a, a) = a; where a, b ∈ I.
A mean is called subadditive (superadditive), if

M(x1 + x2, y1 + y2) ≤ (≥)M(x1, y1) +M(x2, y2);xi, yi > 0(i = 1, 2),

and M is called subhomogenous (superhomogenous) if

M(tu, tv) ≤ (≥)t ·M(u, v);∀t, u, v > 0.

Examples of (M,N)-convex functions

1. M = N = A = arithmetic mean (Jensen convexity)

2. M = A, N = G (J = (0,∞)) (log–convex functions)

3. M = N = G (multiplicative (or geometric) convex functions)

4. M = G, N = A ((G,A)-convex functions)

5. M = A,N = Ap ((A,Ap)-convex functions)

6. M = N = L (L-convex functions)

7. M = arbitrary, N = I (integral mean) (convex functions with respect to an integral
mean)

The function f(x) = xk, x ∈ (0,∞) is L-convex iff k ∈ R\(0, 1) (see [10]). The function
f(x) = ax, x ∈ (0,∞) is L-convex for a > 1 and neither L-convex, nor L-concave for any
a ∈ (0, 1). Finally, the function f(x) = ex is identric convex (i.e. convex with respect to the
identric mean I(a, b)).

41



3 Some basic properties

Theorem 1. Assume that N is a symmetrical subhomogenous mean such that G ≤ N, where G
is the geometric mean. Let f : (a, b) → (0,∞) be (M,N)-concave function (here 0 < a < b).
Then the application

F (x) =
1

f(x)
, x ∈ (a, b)

is (M,N)-convex.

Proof. Applying the property N(tu, tv) ≤ tN(u, v) for u =
1

f(x)
, v =

1

f(y)
, t = f(x)f(y), we

get the inequality N
(

1

f(x)
,

1

f(y)

)
≥ 1

f(x)f(y)
. N (f(y), f(x)) =

1

f(x)f(y)
·N (f(x), f(y)) .

Therefore, we can write (F (x), F (y)) = N

(
1

f(x)
,

1

f(y)

)
≥ 1

f(x)f(y)
· N(f(y), f(x)) =

N2(f(x), f(y))

f(x)f(y)
· 1

N(f(x), f(y))
≥ 1

N(f(x), f(y))
≥ 1

f(M(x, y))
= F (M(x, y)). Here we

have taken into account the fact that N is symmetrical, and that
N2(f(x), f(y))

f(x)f(y)
≥ 1, which is a

consequence of N ≥ G.

Theorem 2. Let f, g : (a, b) → (0,∞) such that f(x) < g(x) for all x ∈ (a, b) and suppose
that f is (M,N)- convex, while g is (M,N)-concave. If the mean N is superadditive then the
application h = g − f is an (M,N)-concave function.

Proof. One has h(M(x, y)) = g(M(x, y)) − f(M(x, y)) ≥ N(g(x), g(y)) − N(f(x), f(y)) =

N(h(x) + f(x), h(y) + f(y))−N(f(x), f(y)).

On the other hand, by the superadditivity of N, we can write

N(h(x) + f(x), h(y) + f(y)) ≥ N(h(x), h(y)) +N(f(x), f(y)),

so we get
h(M(x, y)) ≥ N(h(x), h(y)),

and the result follows.

Remark 1. Let f(x) = x−α, g(x) = k · x, where α, k, p are selected such that k · pα+1 > 1 (i.e.

kx >
1

xα
for x > p.) When M = N = L, then L being superadditive (see [4]), so if α > 0, then

−α /∈ (0, 1), thus f(x) = x−α is L-convex function. By Theorem 2 we get that h(x) = kx− x−α

is L-concave.

Theorem 3. If f, g : (a, b)→ (0,∞) are (M,N)-convex (concave) functions, and N is superad-
ditive (subadditive), then k = f + g is (M,N)-convex (concave), too.
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Proof. We prove the case when f, g are (M,N)-convex, andN is superadditive. The second case
can be proved in an analogous way.

h(M(x, y)) = f(M(x, y)) + g(M(x, y)) ≤ N(f(x), f(y)) + N(g(x), g(y)) ≤ N(f(x) +

g(x), f(y) + g(y)) = N(h(x), h(y)).

The following theorem is almost immediate, and we state it here for the sake of completeness:

Theorem 4. If f is (M,N)-convex, N is subhomogeneous and α > 0, then the function g = α ·f
is (M,N)-convex, too.

4 Continuity properties

Theorem 5. Assume that for all x > 0, the application M(x, ·) : (0,∞)→ (0,∞) is an increas-
ing homeomorphism. Let f be an (M,A)-convex function, where A is the arithmetic mean. If
f : (a, b)→ (0,∞) is monotonic, then f is continuous.

Proof. The proof uses ideas from [5] and [10]. Suppose that the function f is increasing and
let z ∈ (a, b) be fixed. If lim

x↗z
f(z) = f(z−), lim

x↘z
f(z) = f(z+) are standard notations in what

follows, then a basic property gives the inequality f(z−) ≤ f(z+).

Let now z < zn < b(n ∈ N), zn → z(n→∞) be a sequence converging to z from the right.
By definition of f, we can write

f(M(z, zn)) ≤ A(f(z), f(zn)) =
f(z) + f(zn)

2
(∗)

Since z ≤M(z, zn) ≤ zn and M(z, zn)→ z + (n→∞), by (∗) we get

f(z+) ≤
f(z) + f(z+)

2
,

giving f(z+) ≤ f(z).

But f is increasing, so it is well-known that

f(z−) ≤ f(z) ≤ f(z+) (1)

Therefore, we get
f(z+) = f(z) (2)

Now, for given zn ∈ (z, b) we can construct a wn ∈ (a, z) such that z = M(wn, zn), where
wn → z(n→∞).

Thus, one has

f(z) = f(M(wn, zn)) ≤
f(wn) + f(zn)

2
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and letting n→∞ we get by (2):

f(z+) = f(z) ≤ f(z−) + f(z+)

2
,

so f(z+) ≤ f(z−).
By (1) and (2) we have

f(z) = f(z+) = f(z−),

i.e. f is continuous at z.
When f is decreasing, a similar argument applies, by selecting now zn ∈ (a, z).

Remark 2. If N is a mean with the property that N ≤ A, then any (M,N)-convex function is
(M,A)-convex, too. For example, for M = N = L we obtain that an L-convex function, is
(L,A)- convex, too. Thus we reobtain a result by T. Zgraja [10].

Theorem 6. Let M satisfy the same property as in Theorem 5, and suppose that f is (M,G)-
concave, where G is the geometric mean. If f : (a, b)→ (0,∞) is a monotone function, then it is
continuous.

Proof. The same method can be applied as in the proof of Theorem 5, by changing only relation
(∗) to

f(M(z, zn)) ≥ G(f(z), f(zn)) =
√
f(z)f(zn) (∗∗)

and repeating the arguments.

Remark 3. If f is (M,N)-concave, and N ≥ G, then clearly f will be an (M,G)-concave
function, too. E.g. for M = N = L. Thus the class of (L,G)-concave functions is larger than
that of L-concave functions.

In what follows, a function f : (a, b) → R will be called intervally monotone if there exist a
finite number of points a = x0 < x1 < . . . < xn = b such that f is monotone on each intervals
(xi−1, xi) (i = 1, 2, . . . , n).

Theorem 7. Suppose thatM satisfies the conditions of Theorem 5, and let f : (a, b)→ (0,∞) be
intervally monotonic, and (M,A)-convex function (or (M,G)-concave). Then f is continuous.

Proof. On base of Theorem 5 (Th. 6) it is sufficient to prove the continuity in such a point z,
where the monotonicity property is changed. Let us suppose, e.g. that f is decreasing in a left
vecinicity (α, z) and right vecinicity (z, β) of z. Let (wn) such that α < wn < z and wn → z

(n→∞).

Then we can write

f(M(wn, z)) ≤ A(f(wn), f(z)) =
f(wn) + f(z)

2
(∗)
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Since α ≤ M(wn, z) ≤ z and M(wn, z) → z- (as n → ∞), from (∗) we get f(z−) ≤
f(z−) + f(z)

2
, so f(z−) ≤ f(z).

Letting in a similar way z < zn < β, we get that f(z+) ≤ f(z). Let now α < wn < z

and z < zn < β be sequences converging to z and z = M(wn, zn) for each n ∈ N. Since

f(z) = f(M(wn, zn)) ≤
f(wn) + f(zn)

2
, one gets

f(z) ≤ f(z−) + f(z+)

2
(3)

But f(z−) ≤ f(z) and f(z+) ≤ f(z), so
f(z−) + f(z+)

2
≤ f(z), and by (3) we get

f(z) =
f(z−) + f(z+)

2
(4)

Therefore, it cannot be true at the same time that f(z) > f(z−) and f(z) > f(z+). Suppose
that f(z−) ≥ f(z). Then we have f(z−) = f(z), and from (4) we get f(z+) = f(z) = f(z−).

If f is (M,G)- concave, the similar method may be applied, by taking into account that
f(M(wn, z)) ≥

√
f(wn) · f(z).

5 Other properties

The following surprising property shows that decreasing (M,A)-convex functions for M ≤ A

are in fact the classical convex functions.

Theorem 8. Let us assume that f : (a, b) → (0,∞) is (M,A)-convex function, and decreasing
function. Suppose that the conditions of Theorem 5 are satisfied, and that M ≤ A. Then f is a
convex function.

Proof. By f(M(x, y)) ≤ f(x) + f(y)

2
and f being decreasing, we obtain f(M(x, y)) ≥ f(A)

as M ≤ A. So we get

f(A) = f

(
x+ y

2

)
≤ f(x) + f(y)

2
,

which means in fact that f is a Jensen–convex function [5].
On the other hand, by Theorem 5, f is continuous. It is well-known that, a Jensen–convex

function which is continuous, coincides with a convex function, so the result follows.

Theorem 9. Let f : (a, b) → R be an (M,N)-convex function, and satisfying the following
properties:

i) for all x, y ∈ (a, b) there exists z ∈ (a, b) such that

M(y, z) = x;
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ii) there exists λ ∈ (0, 1) such that for all x, y ∈ (a, b) one has

M(x, y) ≤ λmax{x, y}+ (1− λ)min{x, y}

If f is bounded from above, then f must be constant.

Proof. Let c = sup{f(t) : t ∈ (a, b)}. Thus f(t) ≤ c. Let ε > 0 be arbitrary, and select y ∈ (a, b)

such that
f(y) > c− (1− λ)ε (∗)

We will show that f(x) ≥ c − ε for all x ∈ (a, b). Then, by letting ε → 0, we get f(x) ≥ c,

which along with f(x) ≤ c gives h(x) = c.

Let us suppose that there is an x0 ∈ (a, b) with f(x0) < c− ε.
Then by i) ∃z ∈ (a, b) : y =M(y0, z).

Thus

c− (1− λ)ε < f(y) = f(M(y0, z)) ≤ N(f(y0), f(z))

≤ λmax{f(y0), f(z)}+ (1− λ)min{f(y0), f(z)}

< λc+ (1− λ)(c− ε) = c− (1− λ)ε.

This contradicts relation (∗).

Remark 4. 1. If M = N = A, we get the following classical result: If f : (a, b) → R is
Jensen-convex, and bounded from above, then it is constant ([5]).

2. For M = N = L, λ = 1
2

we get that if f is L-convex, and bounded from above, then it is
constant (Z. Kominek, T. Zgraja [9]).

Remark 5. Finally, we mention two results wich have been proved in 1998 by the first author
[7]:

Theorem 10. Let f ∈ C[a, b] be strictly increasing such that 1/f−1 is a convex function (where
f−1 is the inverse function of f ). Then f is an (L, I)-convex function, where L is the logarithmic
mean and I is the integral mean.

Theorem 11. Let f ∈ C[a, b] be strictly increasing such that f−1 is log–convex. Then f is
(I,I)-concave function, where I is the identric mean, and I is the integral mean.
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