Notes on Number Theory and Discrete Mathematics ISSN 1310–5132 Vol. 21, 2015, No. 4, 40–47

On (M, N) -convex functions

József Sándor 1 and Edith Egri 2

 $¹$ Babes–Bolyai University, Department of Mathematics,</sup> Cluj-Napoca, Romania e-mail: jsandor@math.ubbcluj.ro

² Babes–Bolyai University, Department of Mathematics, Cluj-Napoca, Romania e-mail: egriedith@gmail.com

Abstract: We consider certain properties of functions $f : J \to I$ (*I*, *J* intervals) such that $f(M(x, y)) \le N(f(x), f(y))$, where M and N are general means. Some results are extensions of the case $M = N = L$, where L is the logarithmic mean.

Keywords: Mean, Logarithmic mean, Identric mean, Integral mean, Convex or concave functions with respect to a mean, Subadditive functions, Continuity. AMS Classification: 26A51, 26D99, 39B72.

1 Introduction

Let $I \subset \mathbb{R}$ be an open interval. An application $M : I \times I \to I$ is called a *mean*, if

$$
\min\{x, y\} \le M(x, y) \le \max\{x, y\} \text{ for } x, y \in I.
$$

Let $J \subset I$ be another open interval and $M, N : J \times J \to J$ be two given means such that $N(J \times J) \subset I$.

A function $f : J \to I$ is called an (M, N) -convex (concave) function, if

$$
f(M(x, y)) \le (\ge) N(f(x), f(y))
$$
 for all $x, y \in J$.

When $M = N$, then f is called an M-convex function. M-convex functions have been introduced and studied for the first time in 1997 by J. Matkowski and J. Rätz $(2, 3)$, while the particular case $M = L$, where L is the logarithmic mean have been studied later by J. Matkowski [4], Z. Kominek and T. Zgraja [9], and T. Zgraja [10].

The general (M, N) -convex functions were introduced in 1998 by J. Sándor [7], who studied also the case when N is an integral mean.

The aim of this paper is to point out some new properties of general (M, N) -convex functions, when M and N satisfy certain conditions. Particularly, when $N = A =$ arithmetic mean, or $N = G =$ geometric mean, continuity properties will be offered. These extend earlier known results.

2 Definitions and notations

Let $a, b > 0$. Then the *arithmetic* and *geometric means* of a and b are defined by $A = A(a, b)$ $a + b$ 2 $G = G(a, b) = \sqrt{ab}$. The *logarithmic mean* is $L = L(a, b) = \frac{b - a}{\log b - \log a}$ $(a \neq b);$ $L(a, a) = a$; while the *identric mean* is $I =$ 1 e $(b^b/a^a)^{1/(b-a)}$ $(a \neq b)$; $I(a, a) = a$. For many properties of the logarithmic and identric means, see [1], [6], [8] (we note that $I(a, b)$ should not be confused with the interval I).

A common generalization of A and G are the *power means*, defined by $A_p = A_p(a, b)$ $\int a^p + b^p$ 2 $\lambda^{1/p}$ $(p \neq 0); A_0 = G$. The *integral mean* of a function $f : I \to \mathbb{R}$ is given by $\mathfrak{I}(a, b) = \frac{1}{1}$ $b - a$ \int^b a $f(x)dx$ $(a \neq b)$, $\mathfrak{I}(a, a) = a$; where $a, b \in I$.

A mean is called *subadditive (superadditive)*, if

 $M(x_1+x_2,y_1+y_2) \leq (\geq) M(x_1,y_1) + M(x_2,y_2); x_i,y_i > 0 (i = \overline{1,2}),$

and M is called *subhomogenous (superhomogenous)* if

$$
M(tu, tv) \leq (\geq) t \cdot M(u, v); \forall t, u, v > 0.
$$

Examples of (M, N) -convex functions

- 1. $M = N = A$ = arithmetic mean (**Jensen convexity**)
- 2. $M = A$, $N = G(J = (0, \infty))$ (log–convex functions)
- 3. $M = N = G$ (multiplicative (or geometric) convex functions)
- 4. $M = G, N = A$ ((G, A)-convex functions)
- 5. $M = A, N = A_n ((A, A_n)$ -convex functions)
- 6. $M = N = L$ (*L*-convex functions)
- 7. $M =$ arbitrary, $N = \mathfrak{I}$ (integral mean) (convex functions with respect to an integral mean)

The function $f(x) = x^k, x \in (0, \infty)$ is L-convex iff $k \in \mathbb{R} \setminus (0, 1)$ (see [10]). The function $f(x) = a^x, x \in (0, \infty)$ is L-convex for $a > 1$ and neither L-convex, nor L-concave for any $a \in (0,1)$. Finally, the function $f(x) = e^x$ is *identric convex* (i.e. convex with respect to the identric mean $I(a, b)$).

3 Some basic properties

Theorem 1. Assume that N is a symmetrical subhomogenous mean such that $G \leq N$, where G *is the geometric mean. Let* $f : (a, b) \to (0, \infty)$ *be* (M, N) *-concave function (here* $0 < a < b$ *). Then the application*

$$
F(x) = \frac{1}{f(x)}, x \in (a, b)
$$

is (M, N) -convex.

Proof. Applying the property $N(tu, tv) \leq tN(u, v)$ for $u = \frac{1}{t}$ 1 $, v =$ $\frac{1}{f(y)}$, $t = f(x)f(y)$, we $f(x)$ $\begin{pmatrix} 1 \end{pmatrix}$ 1 \setminus $\geq \frac{1}{\sqrt{1-\frac{1}{2}}}$. $N(f(y), f(x)) = \frac{1}{f(x)}$ get the inequality N , $\cdot N(f(x), f(y))$. $f(x)$ $f(y)$ $f(x)f(y)$ $f(x)f(y)$ $\begin{pmatrix} 1 \end{pmatrix}$ 1 \setminus $\geq \frac{1}{r}$ Therefore, we can write $(F(x), F(y)) = N$, $\cdot N(f(y), f(x)) =$ $f(x)$ $f(y)$ $f(x)f(y)$ $N^2(f(x), f(y))$ $\cdot \frac{1}{N(f(x), f(y))} \geq \frac{1}{N(f(x), f(y))} \geq \frac{1}{f(M(x))}$ $\frac{1}{f(M(x,y))}$ = $F(M(x,y))$. Here we $f(x)f(y)$ have taken into account the fact that N is symmetrical, and that $\frac{N^2(f(x), f(y))}{f(x), f(y)}$ $\frac{f(y(x), f(y))}{f(x)f(y)} \geq 1$, which is a consequence of $N > G$. \Box

Theorem 2. Let $f, g : (a, b) \rightarrow (0, \infty)$ such that $f(x) < g(x)$ for all $x \in (a, b)$ and suppose *that* f *is* (M, N)*- convex, while* g *is* (M, N)*-concave. If the mean* N *is superadditive then the application* $h = g - f$ *is an* (M, N) *-concave function.*

Proof. One has $h(M(x, y)) = g(M(x, y)) - f(M(x, y)) \ge N(g(x), g(y)) - N(f(x), f(y)) =$ $N(h(x) + f(x), h(y) + f(y)) - N(f(x), f(y)).$

On the other hand, by the superadditivity of N , we can write

$$
N(h(x) + f(x), h(y) + f(y)) \ge N(h(x), h(y)) + N(f(x), f(y)),
$$

so we get

$$
h(M(x, y)) \ge N(h(x), h(y)),
$$

and the result follows.

Remark 1. Let $f(x) = x^{-\alpha}$, $g(x) = k \cdot x$, where α , k, p are selected such that $k \cdot p^{\alpha+1} > 1$ (i.e. $kx > \frac{1}{x}$ $\frac{1}{x^{\alpha}}$ for $x > p$.) When $M = N = L$, then L being superadditive (see [4]), so if $\alpha > 0$, then $-\alpha \notin (0, 1)$, *thus* $f(x) = x^{-\alpha}$ *is L-convex function. By Theorem 2 we get that* $h(x) = kx - x^{-\alpha}$ *is* L*-concave.*

Theorem 3. If $f, g : (a, b) \rightarrow (0, \infty)$ are (M, N) -convex (concave) functions, and N is superad*ditive (subadditive), then* $k = f + g$ *is* (M, N) *-convex (concave), too.*

 \Box

Proof. We prove the case when f, q are (M, N) -convex, and N is superadditive. The second case can be proved in an analogous way.

 $h(M(x, y)) = f(M(x, y)) + g(M(x, y)) \le N(f(x), f(y)) + N(g(x), g(y)) \le N(f(x) +$ $g(x), f(y) + g(y)) = N(h(x), h(y)).$ \Box

The following theorem is almost immediate, and we state it here for the sake of completeness:

Theorem 4. *If* f *is* (*M, N*)*-convex,* N *is subhomogeneous and* $\alpha > 0$ *, then the function* $g = \alpha \cdot f$ *is* (M, N)*-convex, too.*

4 Continuity properties

Theorem 5. Assume that for all $x > 0$, the application $M(x, \cdot) : (0, \infty) \to (0, \infty)$ is an increas*ing homeomorphism. Let* f *be an* (M, A)*-convex function, where* A *is the arithmetic mean. If* $f:(a, b) \rightarrow (0, \infty)$ *is monotonic, then* f *is continuous.*

Proof. The proof uses ideas from [5] and [10]. Suppose that the function f is increasing and let $z \in (a, b)$ be fixed. If $\lim_{x \to z} f(z) = f(z-), \lim_{x \to z} f(z) = f(z+)$ are standard notations in what follows, then a basic property gives the inequality $f(z-) \le f(z+)$.

Let now $z < z_n < b(n \in \mathbb{N})$, $z_n \to z(n \to \infty)$ be a sequence converging to z from the right. By definition of f , we can write

$$
f(M(z, z_n)) \le A(f(z), f(z_n)) = \frac{f(z) + f(z_n)}{2}
$$
 (*)

Since $z \leq M(z, z_n) \leq z_n$ and $M(z, z_n) \to z + (n \to \infty)$, by $(*)$ we get

$$
f(z_{+}) \leq \frac{f(z) + f(z_{+})}{2},
$$

giving $f(z_+) \leq f(z)$.

But f is increasing, so it is well-known that

$$
f(z-) \le f(z) \le f(z+) \tag{1}
$$

Therefore, we get

$$
f(z+) = f(z) \tag{2}
$$

Now, for given $z_n \in (z, b)$ we can construct a $w_n \in (a, z)$ such that $z = M(w_n, z_n)$, where $w_n \to z(n \to \infty).$ \Box

Thus, one has

$$
f(z) = f(M(w_n, z_n)) \leq \frac{f(w_n) + f(z_n)}{2}
$$

and letting $n \to \infty$ we get by (2):

$$
f(z+) = f(z) \le \frac{f(z-) + f(z+)}{2},
$$

so $f(z+) < f(z-)$.

By (1) and (2) we have

$$
f(z) = f(z+) = f(z-),
$$

i.e. f is continuous at z.

When f is decreasing, a similar argument applies, by selecting now $z_n \in (a, z)$.

Remark 2. If N is a mean with the property that $N \leq A$, then any (M, N) -convex function is (M, A) -convex, too. For example, for $M = N = L$ we obtain that an L-convex function, is (L, A)*- convex, too. Thus we reobtain a result by T. Zgraja [10].*

Theorem 6. *Let* M *satisfy the same property as in Theorem 5, and suppose that* f *is* (M, G) *concave, where* G *is the geometric mean.* If $f : (a, b) \to (0, \infty)$ *is a monotone function, then it is continuous.*

Proof. The same method can be applied as in the proof of Theorem 5, by changing only relation (∗) to

$$
f(M(z, z_n)) \ge G(f(z), f(z_n)) = \sqrt{f(z)f(z_n)}
$$
 (**)

 \Box

and repeating the arguments.

Remark 3. If f is (M, N) -concave, and $N \geq G$, then clearly f will be an (M, G) -concave *function, too. E.g. for* $M = N = L$. *Thus the class of* (L, G) -concave functions is larger than *that of* L*-concave functions.*

In what follows, a function $f : (a, b) \to \mathbb{R}$ will be called *intervally monotone* if there exist a finite number of points $a = x_0 < x_1 < \ldots < x_n = b$ such that f is monotone on each intervals (x_{i-1}, x_i) $(i = 1, 2, \ldots, n).$

Theorem 7. *Suppose that* M *satisfies the conditions of Theorem 5, and let* $f : (a, b) \rightarrow (0, \infty)$ *be intervally monotonic, and* (M, A)*-convex function (or* (M, G)*-concave). Then* f *is continuous.*

Proof. On base of Theorem 5 (Th. 6) it is sufficient to prove the continuity in such a point z, where the monotonicity property is changed. Let us suppose, e.g. that f is decreasing in a left vecinicity (α, z) and right vecinicity (z, β) of z. Let (w_n) such that $\alpha < w_n < z$ and $w_n \to z$ $(n \to \infty).$

Then we can write

$$
f(M(w_n, z)) \le A(f(w_n), f(z)) = \frac{f(w_n) + f(z)}{2}
$$
 (*)

Since $\alpha \leq M(w_n, z) \leq z$ and $M(w_n, z) \to z$ - (as $n \to \infty$), from (*) we get $f(z-) \leq z$ $f(z-) + f(z)$ $\frac{1}{2}$, so $f(z-) \leq f(z)$.

Letting in a similar way $z < z_n < \beta$, we get that $f(z+) \leq f(z)$. Let now $\alpha < w_n < z$ and $z < z_n < \beta$ be sequences converging to z and $z = M(w_n, z_n)$ for each $n \in \mathbb{N}$. Since $f(z) = f(M(w_n, z_n)) \leq \frac{f(w_n) + f(z_n)}{2}$ $\frac{1}{2}$, one gets

$$
f(z) \le \frac{f(z-)+f(z+)}{2} \tag{3}
$$

But $f(z-) \le f(z)$ and $f(z+) \le f(z)$, so $f(z-) + f(z+)$ $\frac{y^2 + y^2}{2} \le f(z)$, and by (3) we get

$$
f(z) = \frac{f(z-)+f(z+)}{2} \tag{4}
$$

Therefore, it cannot be true at the same time that $f(z) > f(z-)$ and $f(z) > f(z+)$. Suppose that $f(z-) \ge f(z)$. Then we have $f(z-) = f(z)$, and from (4) we get $f(z+) = f(z) = f(z-)$.

If f is (M, G) - concave, the similar method may be applied, by taking into account that $f(M(w_n, z)) \geq \sqrt{f(w_n) \cdot f(z)}.$ \Box

5 Other properties

The following surprising property shows that decreasing (M, A) -convex functions for $M \leq A$ are in fact the classical convex functions.

Theorem 8. Let us assume that $f : (a, b) \rightarrow (0, \infty)$ is (M, A) -convex function, and decreasing *function. Suppose that the conditions of Theorem 5 are satisfied, and that* $M \leq A$. *Then* f *is a convex function.*

Proof. By $f(M(x, y)) \leq \frac{f(x) + f(y)}{2}$ $\frac{1}{2}$ and f being decreasing, we obtain $f(M(x, y)) \ge f(A)$ as $M \leq A$. So we get

$$
f(A) = f\left(\frac{x+y}{2}\right) \le \frac{f(x) + f(y)}{2},
$$

which means in fact that f is a Jensen–convex function [5].

On the other hand, by Theorem 5, f is continuous. It is well-known that, a Jensen–convex function which is continuous, coincides with a convex function, so the result follows. \Box

Theorem 9. Let $f : (a, b) \rightarrow \mathbb{R}$ be an (M, N) -convex function, and satisfying the following *properties:*

i) for all $x, y \in (a, b)$ *there exists* $z \in (a, b)$ *such that*

$$
M(y, z) = x;
$$

ii) there exists $\lambda \in (0,1)$ *such that for all* $x, y \in (a, b)$ *one has*

 $M(x, y) \leq \lambda \max\{x, y\} + (1 - \lambda) \min\{x, y\}$

If f *is bounded from above, then* f *must be constant.*

Proof. Let $c = \sup\{f(t) : t \in (a, b)\}\$. Thus $f(t) \leq c$. Let $\epsilon > 0$ be arbitrary, and select $y \in (a, b)$ such that

$$
f(y) > c - (1 - \lambda)\epsilon \tag{*}
$$

We will show that $f(x) \ge c - \epsilon$ for all $x \in (a, b)$. Then, by letting $\epsilon \to 0$, we get $f(x) \ge c$, which along with $f(x) \le c$ gives $h(x) = c$.

Let us suppose that there is an $x_0 \in (a, b)$ with $f(x_0) < c - \epsilon$.

Then by i) $\exists z \in (a, b) : y = M(y_0, z)$.

Thus

$$
c - (1 - \lambda)\epsilon < f(y) = f(M(y_0, z)) \le N(f(y_0), f(z))
$$
\n
$$
\le \lambda \max\{f(y_0), f(z)\} + (1 - \lambda) \min\{f(y_0), f(z)\}
$$
\n
$$
< \lambda c + (1 - \lambda)(c - \epsilon) = c - (1 - \lambda)\epsilon.
$$

This contradicts relation (∗).

- **Remark 4.** *1.* If $M = N = A$, we get the following classical result: If $f : (a, b) \rightarrow \mathbb{R}$ is *Jensen-convex, and bounded from above, then it is constant ([5]).*
	- 2. For $M = N = L, \lambda = \frac{1}{2}$ $\frac{1}{2}$ we get that if f is L-convex, and bounded from above, then it is *constant (Z. Kominek, T. Zgraja [9]).*

Remark 5. *Finally, we mention two results wich have been proved in 1998 by the first author [7]:*

Theorem 10. Let $f \text{ } \in C[a, b]$ be strictly increasing such that $1/f^{-1}$ is a convex function (where f −1 *is the inverse function of* f*). Then* f *is an* (L, I)*-convex function, where* L *is the logarithmic mean and* \Im *is the integral mean.*

Theorem 11. Let $f \in C[a, b]$ be strictly increasing such that f^{-1} is log-convex. Then f is (I, \mathfrak{I}) -concave function, where I is the identric mean, and \mathfrak{I} *is the integral mean.*

 \Box

References

- [1] Bullen, P. S. (2003) *Handbook of means and their inequalities*, Kluwer Acad. Publ.
- [2] Matkowski, J. & J. Rätz (1997) Convex functions wirh respect to an arbitrary mean, *Intern*. *Ser. Num. Math.*, 123, 249–258.
- [3] Matkowski, J. & J. Rätz (1997) Convexity of the power functions wirh respect to symmetric homogeneous means, *Intern. Ser. Num. Math.*, 123, 231–247.
- [4] Matkowski, J. (2003) Affine and convex functions with respect to the logarithmic mean, *Colloq. Math.*, 95, 217–230.
- [5] Roberts, A. W. & D. E. Varberg (1973) *Convex functions*, Academic Press.
- [6] Sándor, J. (1990) On the identric and logarithmic means, *Aequationes Math.*, 40, 261–270.
- [7] Sándor, J. (1998) *Inequalities for generalized convex functions with applications*, Babes-Bolyai Univ., Cluj, Romania (in Romanian).
- [8] Sándor, J. & B. A. Bhayo (2015) On some some inequalities for the identric, logarithmic and related means, *J. Math. Ineq.*, 9(3), 889–896.
- [9] Zgraja, T. & Z. Kominek (1999) Convex functions wirh respect to logarithmic mean and sandwich theorem, *Acta Univ. Car.–Math. Phys.*, 40(2), 75–78.
- [10] Zgraja, T. (2005) On continous convex or concave functions wirh respect to the logarithmic mean, *Acta Univ. Car.–Math. Phys.*, 46(1), 3–10.