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1 Introduction

Let I C R be an open interval. An application M : [ x I — [ is called a mean, if
min{z,y} < M(x,y) < max{x,y} forx,y € I.

Let J C I be another open interval and M, N : J x J — .J be two given means such that
N(Jx J)cClI.
A function f : J — [ is called an (M, N)-convex (concave) function, if

F(M(x,)) < (2)N(f(x), f(y)) forall 2,y € J.

When M = N, then f is called an M-convex function. M-convex functions have been
introduced and studied for the first time in 1997 by J. Matkowski and J. Ritz ([2, 3]), while the
particular case M = L, where L is the logarithmic mean have been studied later by J. Matkowski
[4], Z. Kominek and T. Zgraja [9], and T. Zgraja [10].
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The general (M, N )-convex functions were introduced in 1998 by J. Sandor [7], who studied
also the case when [V is an integral mean.

The aim of this paper is to point out some new properties of general (M, N)-convex functions,
when M and N satisfy certain conditions. Particularly, when N = A = arithmetic mean, or
N = G = geometric mean, continuity properties will be offered. These extend earlier known
results.

2 Definitions and notations

Let a,b > 0. Then the arithmetic and geometric means of a and b are defined by A = A(a,b) =
b h—
i ; G = G(a,b) = Vab. The logarithmic mean is L = L(a,b) = —a(a # b);
2 logb — loga
1 —a
L(a,a) = a; while the identric mean is [ = - (bb/aa)l/(b "(a # b); I(a,a) = a. For many
e

properties of the logarithmic and identric means, see [1], [6], [8] (we note that /(a, b) should not

be confused with the interval 7).
A common generalization of A and G are the power means, defined by A, = Ap,(a,b) =

a? + b\ P . : .
5 (p # 0); Ay = G. The integral mean of a function f : I — R is given by
1 b
J(a,b) = m/ f(z)dz (a # b), I(a,a) = a; where a,b € I.

A mean is call(z:d subadditive (superadditive), if
M (21 + 22,31+ y2) < ()M (21, 91) + M (2, y2); 4,95 > 00 = 1,2),
and M is called subhomogenous (superhomogenous) if

M (tu,tv) < (>)t - M(u,v);Vt,u,v > 0.

Examples of (1, N)-convex functions

1. M = N = A = arithmetic mean (Jensen convexity)

2. M=A, N =G (J = (0,00)) (log—convex functions)

3. M = N = G (multiplicative (or geometric) convex functions)
4. M =G, N = A ((G, A)-convex functions)

5. M =A N =A4,((A, A,)-convex functions)

6. M = N = L (L-convex functions)

7. M = arbitrary, N = 7T (integral mean) (convex functions with respect to an integral
mean)

The function f(z) = z*, 2 € (0,00) is L-convex iff k& € R\(0, 1) (see [10]). The function
f(z) = a®,x € (0,00) is L-convex for a > 1 and neither L-convex, nor L-concave for any
a € (0,1). Finally, the function f(x) = € is identric convex (i.e. convex with respect to the
identric mean [ (a, b)).
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3 Some basic properties

Theorem 1. Assume that N is a symmetrical subhomogenous mean such that G < N, where G
is the geometric mean. Let f : (a,b) — (0,00) be (M, N)-concave function (here 0 < a < b).
Then the application

1
F(z) = %,x € (a,b)

is (M, N)-convex.
Proof. Applying the pro;l)erty ]If(tu, tv) < iN(u, v) for u = f(lx)’ v = @, t=f(z)f(y), we
getthe nequality N (75, ) > o N1<f<y>,1f<x>> T N (f@). /).
N2£[‘fh(er)ef;r(e,);ve can wrilte (F(x), F(y)) :1N (f(:c)’ f(y))1> D7) N(f(y), f(x)) =

2, 1Y = x ere we

M@ NG = NG00 = g - Eﬂf; -
. . . x), J\y . .

have taken into account the fact that NV is symmetrical, and that @) W) > 1, whichis a
consequence of N > (. O]

Theorem 2. Let f,g : (a,b) — (0,00) such that f(x) < g(x) for all x € (a,b) and suppose
that f is (M, N)- convex, while g is (M, N)-concave. If the mean N is superadditive then the
application h = g — f is an (M, N)-concave function.

Proof. One has h(M(x,y)) = g(M(z,y)) — f(M(z,y)) = N(g(x),9(y)) — N(f(2), f(y)) =
N(h(z) + f(x), h(y) + f(y)) = N(f(x), f ().

On the other hand, by the superadditivity of N, we can write

N(h(x) + f(z), h(y) + f(y)) = N(h(x), h(y)) + N(f(2), f(y)),

So we get
h(M(z,y)) = N(h(z), h(y)),

and the result follows. O

Remark 1. Let f(x) = 7%, g(x) = k - &, where o, k, p are selected such that k - p*™' > 1 (i.e.
kx > iafor x > p.) When M = N = L, then L being superadditive (see [4]), so if « > 0, then
—a ¢ %0, 1), thus f(x) = = is L-convex function. By Theorem 2 we get that h(x) = kx — x~
is L-concave.

Theorem 3. If f, g : (a,b) — (0,00) are (M, N)-convex (concave) functions, and N is superad-
ditive (subadditive), then k = f + g is (M, N)-convex (concave), too.
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Proof. We prove the case when f, g are (M, N)-convex, and N is superadditive. The second case
can be proved in an analogous way.

WM (z,y)) = f(M(z,y)) + g(M(2,y)) < N(f(2), f(y)) + N(g(z),9(y)) < N(f(x) +
9(x), f(y) + 9(y)) = N(h(z), h(y)). =

The following theorem is almost immediate, and we state it here for the sake of completeness:

Theorem 4. If f is (M, N)-convex, N is subhomogeneous and « > 0, then the function g = «- f

is (M, N)-convex, too.

4 Continuity properties

Theorem 5. Assume that for all x > 0, the application M (z,-) : (0,00) — (0, 00) is an increas-
ing homeomorphism. Let f be an (M, A)-convex function, where A is the arithmetic mean. If
f:(a,b) = (0,00) is monotonic, then f is continuous.

Proof. The proof uses ideas from [5] and [10]. Suppose that the function f is increasing and
let z € (a,b) be fixed. If li}n f(z) = f(z—), li{n f(2) = f(z+) are standard notations in what

follows, then a basic property gives the inequality f(z—) < f(z+).
Let now z < z, < b(n € N), 2, — z(n — oc0) be a sequence converging to z from the right.
By definition of f, we can write

FOM (. 2) < AU, o)) = TG 8

Since z < M(z, 2,) < z, and M(z,z,) — z + (n — 00), by (x) we get

f(2) + f(zy)

f(z-l—) < 9 )

giving f(z4) < f(2).
But f is increasing, so it is well-known that

flz=) < f(z) < f(z4) Q)

Therefore, we get
fz+) = f(2) )
Now, for given z, € (z,b) we can construct a w,, € (a, z) such that z = M (w,, z,,), where
w, — z(n — 00). O

Thus, one has
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and letting n — oo we get by (2):

flz=) + f(z+)

flet) = () < TETTED,

so f(z+) < f(2—).
By (1) and (2) we have

f(z) = f(z4) = f(z-),

i.e. f is continuous at 2.
When f is decreasing, a similar argument applies, by selecting now z,, € (a, 2).

Remark 2. If N is a mean with the property that N < A, then any (M, N)-convex function is
(M, A)-convex, too. For example, for M = N = L we obtain that an L-convex function, is
(L, A)- convex, too. Thus we reobtain a result by T. Zgraja [10].

Theorem 6. Let M satisfy the same property as in Theorem 5, and suppose that f is (M, G)-
concave, where G is the geometric mean. If f : (a,b) — (0,00) is a monotone function, then it is

continuous.

Proof. The same method can be applied as in the proof of Theorem 5, by changing only relation
(%) to
FM(z,2,)) = G(f(2), f(zn)) = V f(2) f(zn) (x%)

and repeating the arguments. [

Remark 3. If f is (M, N)-concave, and N > G, then clearly f will be an (M,G)-concave
function, too. E.g. for M = N = L. Thus the class of (L, G)-concave functions is larger than
that of L-concave functions.

In what follows, a function f : (a,b) — R will be called intervally monotone if there exist a
finite number of points a = xy < x; < ... < xz, = b such that f is monotone on each intervals
(ZL’i_l,ZBZ‘) (2 = 1, 2, PN ,n).

Theorem 7. Suppose that M satisfies the conditions of Theorem 5, and let f : (a,b) — (0, 00) be
intervally monotonic, and (M, A)-convex function (or (M, G)-concave). Then f is continuous.

Proof. On base of Theorem 5 (Th. 6) it is sufficient to prove the continuity in such a point z,

where the monotonicity property is changed. Let us suppose, e.g. that f is decreasing in a left

vecinicity («, z) and right vecinicity (z, 3) of z. Let (w,) such that & < w,, < z and w,, — z
Then we can write

(*)
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Since o < M(wy,2) < z and M(w,,z) — 2- (as n — o0), from (x) we get f(z—) <

flz—)+ f(z
FE) ETE) o fam) < £02).
Letting in a similar way z < z, < [, we get that f(z+) < f(2). Let now a < w,, < z

and z < z, < [ be sequences converging to z and z = M (w,, z,) for each n € N. Since

f(z) = f(M(wy, z,)) < f(wn) ; 1 (zn) , one gets
flz—) + f(et)
f(2) < . 3)
But f(2=) < f(2) and f(=4) < f(2), s0 f(z_)‘gf('z*) < f(2), and by (3) we get
PRNECSEDICS "

Therefore, it cannot be true at the same time that f(z) > f(z—) and f(z) > f(z+). Suppose
that f(z—) > f(z). Then we have f(z—) = f(z), and from (4) we get f(z+) = f(2) = f(z—).
If fis (M,G)- concave, the similar method may be applied, by taking into account that

F(M(wn, 2)) >/ f(wn) - f(2). o

S5 Other properties

The following surprising property shows that decreasing (M, A)-convex functions for M < A
are in fact the classical convex functions.

Theorem 8. Let us assume that f : (a,b) — (0,00) is (M, A)-convex function, and decreasing
function. Suppose that the conditions of Theorem 5 are satisfied, and that M < A. Then f is a
convex function.

Proof. By f(M(z,y)) < LTI
as M < A. So we get

and f being decreasing, we obtain f(M(z,y)) > f(A)

f(A):f(I-QFy) < f(l‘);rf(y)7

which means in fact that f is a Jensen—convex function [5].
On the other hand, by Theorem 5, f is continuous. It is well-known that, a Jensen—convex
function which is continuous, coincides with a convex function, so the result follows. O

Theorem 9. Let f : (a,b) — R be an (M, N)-convex function, and satisfying the following

properties:
i) forall x,y € (a,b) there exists z € (a,b) such that
M(y, 2) = =;
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ii) there exists \ € (0, 1) such that for all x,y € (a,b) one has

M(z,y) < Amax{z,y} + (1 — A\) min{z, y}

If f is bounded from above, then f must be constant.

Proof. Letc =sup{f(t):t € (a,b)}. Thus f(t) < c. Lete > 0 be arbitrary, and select y € (a, )
such that

fly) > c=(1=Xe ©)

We will show that f(z) > ¢ — e for all x € (a, b). Then, by letting ¢ — 0, we get f(x) > ¢,
which along with f(x) < ¢ gives h(x) = c.

Let us suppose that there is an zy € (a, b) with f(zq) < ¢ — €.

Then by i) 3z € (a,b) : y = M(yo, 2).

Thus
¢ —(L=XAe < fy) = f(M(yo, 2)) < N(f(v0), f(2))
< Amax{f(yo), f(2)} + (1 = A)min{f(y0), f(2)}
<A+ (1=XN(c—¢)=c— (1= Ne.
This contradicts relation (x). O

Remark4. [. If M = N = A, we get the following classical result: If f : (a,b) — R is
Jensen-convex, and bounded from above, then it is constant ([5]).

2. ForM =N =L\ = % we get that if f is L-convex, and bounded from above, then it is
constant (Z. Kominek, T. Zgraja [9]).

Remark 5. Finally, we mention two results wich have been proved in 1998 by the first author

[7]:

Theorem 10. Ler f € Cla, b] be strictly increasing such that 1/ f~ is a convex function (where
[~ Y is the inverse function of f). Then f is an (L, J)-convex function, where L is the logarithmic
mean and J is the integral mean.

Theorem 11. Let f € Cla,b] be strictly increasing such that [~' is log—convex. Then f is
(1,3)-concave function, where I is the identric mean, and J is the integral mean.
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