Notes on Number Theory and Discrete Mathematics ISSN 1310–5132 Vol. 21, 2015, No. 4, 40–47

On (M, N)-convex functions

József Sándor¹ and Edith Egri²

¹ Babeş–Bolyai University, Department of Mathematics, Cluj-Napoca, Romania e-mail: jsandor@math.ubbcluj.ro

² Babeş-Bolyai University, Department of Mathematics, Cluj-Napoca, Romania e-mail: egriedith@gmail.com

Abstract: We consider certain properties of functions $f : J \to I$ (I, J intervals) such that $f(M(x, y)) \leq N(f(x), f(y))$, where M and N are general means. Some results are extensions of the case M = N = L, where L is the logarithmic mean.

Keywords: Mean, Logarithmic mean, Identric mean, Integral mean, Convex or concave functions with respect to a mean, Subadditive functions, Continuity.

AMS Classification: 26A51, 26D99, 39B72.

1 Introduction

Let $I \subset \mathbb{R}$ be an open interval. An application $M : I \times I \to I$ is called a *mean*, if

$$\min\{x, y\} \le M(x, y) \le \max\{x, y\} \text{ for } x, y \in I.$$

Let $J \subset I$ be another open interval and $M, N : J \times J \to J$ be two given means such that $N(J \times J) \subset I$.

A function $f: J \to I$ is called an (M, N)-convex (concave) function, if

$$f(M(x,y)) \le (\ge)N(f(x), f(y))$$
 for all $x, y \in J$.

When M = N, then f is called an *M*-convex function. *M*-convex functions have been introduced and studied for the first time in 1997 by J. Matkowski and J. Rätz ([2, 3]), while the particular case M = L, where L is the logarithmic mean have been studied later by J. Matkowski [4], Z. Kominek and T. Zgraja [9], and T. Zgraja [10].

The general (M, N)-convex functions were introduced in 1998 by J. Sándor [7], who studied also the case when N is an integral mean.

The aim of this paper is to point out some new properties of general (M, N)-convex functions, when M and N satisfy certain conditions. Particularly, when N = A = arithmetic mean, or N = G = geometric mean, continuity properties will be offered. These extend earlier known results.

2 Definitions and notations

Let a, b > 0. Then the *arithmetic* and *geometric means* of a and b are defined by $A = A(a, b) = \frac{a+b}{2}$; $G = G(a,b) = \sqrt{ab}$. The *logarithmic mean* is $L = L(a,b) = \frac{b-a}{\log b - \log a} (a \neq b)$; L(a,a) = a; while the *identric mean* is $I = \frac{1}{e} (b^b/a^a)^{1/(b-a)} (a \neq b)$; I(a,a) = a. For many properties of the logarithmic and identric means, see [1], [6], [8] (we note that I(a,b) should not be confused with the interval I).

A common generalization of A and G are the *power means*, defined by $A_p = A_p(a, b) = \left(\frac{a^p + b^p}{2}\right)^{1/p}$ $(p \neq 0); A_0 = G$. The *integral mean* of a function $f : I \rightarrow \mathbb{R}$ is given by $\Im(a, b) = \frac{1}{b-a} \int_a^b f(x) dx \ (a \neq b), \Im(a, a) = a$; where $a, b \in I$.

A mean is called subadditive (superadditive), if

 $M(x_1 + x_2, y_1 + y_2) \le (\ge) M(x_1, y_1) + M(x_2, y_2); x_i, y_i > 0 (i = \overline{1, 2}),$

and M is called subhomogenous (superhomogenous) if

$$M(tu, tv) \le (\ge)t \cdot M(u, v); \forall t, u, v > 0.$$

Examples of (M, N)-convex functions

- 1. M = N = A = arithmetic mean (Jensen convexity)
- 2. $M = A, N = G (J = (0, \infty))$ (log-convex functions)
- 3. M = N = G (multiplicative (or geometric) convex functions)
- 4. M = G, N = A ((G, A)-convex functions)
- 5. $M = A, N = A_p$ ((A, A_p)-convex functions)
- 6. M = N = L (*L*-convex functions)
- 7. $M = \text{arbitrary}, N = \Im$ (integral mean) (convex functions with respect to an integral mean)

The function $f(x) = x^k, x \in (0, \infty)$ is *L*-convex iff $k \in \mathbb{R} \setminus (0, 1)$ (see [10]). The function $f(x) = a^x, x \in (0, \infty)$ is *L*-convex for a > 1 and neither *L*-convex, nor *L*-concave for any $a \in (0, 1)$. Finally, the function $f(x) = e^x$ is *identric convex* (i.e. convex with respect to the identric mean I(a, b)).

3 Some basic properties

Theorem 1. Assume that N is a symmetrical subhomogenous mean such that $G \le N$, where G is the geometric mean. Let $f : (a, b) \to (0, \infty)$ be (M, N)-concave function (here 0 < a < b). Then the application

$$F(x) = \frac{1}{f(x)}, x \in (a, b)$$

is (M, N)-convex.

Proof. Applying the property $N(tu, tv) \leq tN(u, v)$ for $u = \frac{1}{f(x)}, v = \frac{1}{f(y)}, t = f(x)f(y)$, we get the inequality $N\left(\frac{1}{f(x)}, \frac{1}{f(y)}\right) \geq \frac{1}{f(x)f(y)}$. $N(f(y), f(x)) = \frac{1}{f(x)f(y)} \cdot N(f(x), f(y))$. Therefore, we can write $(F(x), F(y)) = N\left(\frac{1}{f(x)}, \frac{1}{f(y)}\right) \geq \frac{1}{f(x)f(y)} \cdot N(f(y), f(x)) = \frac{N^2(f(x), f(y))}{f(x)f(y)} \cdot \frac{1}{N(f(x), f(y))} \geq \frac{1}{N(f(x), f(y))} \geq \frac{1}{f(M(x, y))} = F(M(x, y))$. Here we have taken into account the fact that N is symmetrical, and that $\frac{N^2(f(x), f(y))}{f(x)f(y)} \geq 1$, which is a consequence of $N \geq G$.

Theorem 2. Let $f, g : (a, b) \to (0, \infty)$ such that f(x) < g(x) for all $x \in (a, b)$ and suppose that f is (M, N)- convex, while g is (M, N)-concave. If the mean N is superadditive then the application h = g - f is an (M, N)-concave function.

Proof. One has $h(M(x,y)) = g(M(x,y)) - f(M(x,y)) \ge N(g(x),g(y)) - N(f(x),f(y)) = N(h(x) + f(x),h(y) + f(y)) - N(f(x),f(y)).$

On the other hand, by the superadditivity of N, we can write

$$N(h(x) + f(x), h(y) + f(y)) \ge N(h(x), h(y)) + N(f(x), f(y)),$$

so we get

$$h(M(x,y)) \ge N(h(x), h(y)),$$

and the result follows.

Remark 1. Let $f(x) = x^{-\alpha}$, $g(x) = k \cdot x$, where α , k, p are selected such that $k \cdot p^{\alpha+1} > 1$ (i.e. $kx > \frac{1}{x^{\alpha}}$ for x > p.) When M = N = L, then L being superadditive (see [4]), so if $\alpha > 0$, then $-\alpha \notin (0, 1)$, thus $f(x) = x^{-\alpha}$ is L-convex function. By Theorem 2 we get that $h(x) = kx - x^{-\alpha}$ is L-concave.

Theorem 3. If $f, g: (a, b) \to (0, \infty)$ are (M, N)-convex (concave) functions, and N is superadditive (subadditive), then k = f + g is (M, N)-convex (concave), too.

Proof. We prove the case when f, g are (M, N)-convex, and N is superadditive. The second case can be proved in an analogous way.

 $h(M(x,y)) = f(M(x,y)) + g(M(x,y)) \le N(f(x), f(y)) + N(g(x), g(y)) \le N(f(x) + g(x), f(y) + g(y)) = N(h(x), h(y)).$

The following theorem is almost immediate, and we state it here for the sake of completeness:

Theorem 4. If f is (M, N)-convex, N is subhomogeneous and $\alpha > 0$, then the function $g = \alpha \cdot f$ is (M, N)-convex, too.

4 Continuity properties

Theorem 5. Assume that for all x > 0, the application $M(x, \cdot) : (0, \infty) \to (0, \infty)$ is an increasing homeomorphism. Let f be an (M, A)-convex function, where A is the arithmetic mean. If $f : (a, b) \to (0, \infty)$ is monotonic, then f is continuous.

Proof. The proof uses ideas from [5] and [10]. Suppose that the function f is increasing and let $z \in (a, b)$ be fixed. If $\lim_{x \neq z} f(z) = f(z-), \lim_{x \searrow z} f(z) = f(z+)$ are standard notations in what follows, then a basic property gives the inequality $f(z-) \leq f(z+)$.

Let now $z < z_n < b(n \in \mathbb{N}), z_n \to z(n \to \infty)$ be a sequence converging to z from the right. By definition of f, we can write

$$f(M(z, z_n)) \le A(f(z), f(z_n)) = \frac{f(z) + f(z_n)}{2}$$
(*)

Since $z \leq M(z, z_n) \leq z_n$ and $M(z, z_n) \rightarrow z + (n \rightarrow \infty)$, by (*) we get

$$f(z_+) \le \frac{f(z) + f(z_+)}{2}$$

giving $f(z_+) \leq f(z)$.

But f is increasing, so it is well-known that

$$f(z-) \le f(z) \le f(z+) \tag{1}$$

Therefore, we get

$$f(z+) = f(z) \tag{2}$$

Now, for given $z_n \in (z, b)$ we can construct a $w_n \in (a, z)$ such that $z = M(w_n, z_n)$, where $w_n \to z(n \to \infty)$.

Thus, one has

$$f(z) = f(M(w_n, z_n)) \le \frac{f(w_n) + f(z_n)}{2}$$

and letting $n \to \infty$ we get by (2):

$$f(z+) = f(z) \le \frac{f(z-) + f(z+)}{2},$$

so $f(z+) \leq f(z-)$.

By (1) and (2) we have

$$f(z) = f(z+) = f(z-),$$

i.e. f is continuous at z.

When f is decreasing, a similar argument applies, by selecting now $z_n \in (a, z)$.

Remark 2. If N is a mean with the property that $N \le A$, then any (M, N)-convex function is (M, A)-convex, too. For example, for M = N = L we obtain that an L-convex function, is (L, A)- convex, too. Thus we reobtain a result by T. Zgraja [10].

Theorem 6. Let M satisfy the same property as in Theorem 5, and suppose that f is (M, G)-concave, where G is the geometric mean. If $f : (a, b) \to (0, \infty)$ is a monotone function, then it is continuous.

Proof. The same method can be applied as in the proof of Theorem 5, by changing only relation (*) to

$$f(M(z,z_n)) \ge G(f(z),f(z_n)) = \sqrt{f(z)f(z_n)} \tag{**}$$

and repeating the arguments.

Remark 3. If f is (M, N)-concave, and $N \ge G$, then clearly f will be an (M, G)-concave function, too. E.g. for M = N = L. Thus the class of (L, G)-concave functions is larger than that of L-concave functions.

In what follows, a function $f : (a, b) \to \mathbb{R}$ will be called *intervally monotone* if there exist a finite number of points $a = x_0 < x_1 < \ldots < x_n = b$ such that f is monotone on each intervals (x_{i-1}, x_i) $(i = 1, 2, \ldots, n)$.

Theorem 7. Suppose that M satisfies the conditions of Theorem 5, and let $f : (a, b) \to (0, \infty)$ be intervally monotonic, and (M, A)-convex function (or (M, G)-concave). Then f is continuous.

Proof. On base of Theorem 5 (Th. 6) it is sufficient to prove the continuity in such a point z, where the monotonicity property is changed. Let us suppose, e.g. that f is decreasing in a left vecinicity (α, z) and right vecinicity (z, β) of z. Let (w_n) such that $\alpha < w_n < z$ and $w_n \to z$ $(n \to \infty)$.

Then we can write

$$f(M(w_n, z)) \le A(f(w_n), f(z)) = \frac{f(w_n) + f(z)}{2}$$
(*)

Since $\alpha \leq M(w_n, z) \leq z$ and $M(w_n, z) \rightarrow z$ - (as $n \rightarrow \infty$), from (*) we get $f(z-) \leq \frac{f(z-)+f(z)}{2}$, so $f(z-) \leq f(z)$.

Letting in a similar way $z < z_n < \beta$, we get that $f(z+) \leq f(z)$. Let now $\alpha < w_n < z$ and $z < z_n < \beta$ be sequences converging to z and $z = M(w_n, z_n)$ for each $n \in \mathbb{N}$. Since $f(z) = f(M(w_n, z_n)) \leq \frac{f(w_n) + f(z_n)}{2}$, one gets

$$f(z) \le \frac{f(z-) + f(z+)}{2}$$
 (3)

But $f(z-) \le f(z)$ and $f(z+) \le f(z)$, so $\frac{f(z-) + f(z+)}{2} \le f(z)$, and by (3) we get

$$f(z) = \frac{f(z-) + f(z+)}{2}$$
(4)

Therefore, it cannot be true at the same time that f(z) > f(z-) and f(z) > f(z+). Suppose that $f(z-) \ge f(z)$. Then we have f(z-) = f(z), and from (4) we get f(z+) = f(z) = f(z-).

If f is (M,G)- concave, the similar method may be applied, by taking into account that $f(M(w_n,z)) \ge \sqrt{f(w_n) \cdot f(z)}$.

5 Other properties

The following surprising property shows that decreasing (M, A)-convex functions for $M \leq A$ are in fact the classical convex functions.

Theorem 8. Let us assume that $f : (a,b) \to (0,\infty)$ is (M,A)-convex function, and decreasing function. Suppose that the conditions of Theorem 5 are satisfied, and that $M \le A$. Then f is a convex function.

Proof. By $f(M(x,y)) \leq \frac{f(x) + f(y)}{2}$ and f being decreasing, we obtain $f(M(x,y)) \geq f(A)$ as $M \leq A$. So we get

$$f(A) = f\left(\frac{x+y}{2}\right) \le \frac{f(x)+f(y)}{2},$$

which means in fact that f is a Jensen–convex function [5].

On the other hand, by Theorem 5, f is continuous. It is well-known that, a Jensen–convex function which is continuous, coincides with a convex function, so the result follows.

Theorem 9. Let $f : (a,b) \to \mathbb{R}$ be an (M,N)-convex function, and satisfying the following properties:

i) for all $x, y \in (a, b)$ there exists $z \in (a, b)$ such that

$$M(y,z) = x_z$$

ii) there exists $\lambda \in (0, 1)$ *such that for all* $x, y \in (a, b)$ *one has*

 $M(x,y) \le \lambda \max\{x,y\} + (1-\lambda)\min\{x,y\}$

If f is bounded from above, then f must be constant.

Proof. Let $c = \sup\{f(t) : t \in (a, b)\}$. Thus $f(t) \le c$. Let $\epsilon > 0$ be arbitrary, and select $y \in (a, b)$ such that

$$f(y) > c - (1 - \lambda)\epsilon \tag{(*)}$$

We will show that $f(x) \ge c - \epsilon$ for all $x \in (a, b)$. Then, by letting $\epsilon \to 0$, we get $f(x) \ge c$, which along with $f(x) \le c$ gives h(x) = c.

Let us suppose that there is an $x_0 \in (a, b)$ with $f(x_0) < c - \epsilon$.

Then by i) $\exists z \in (a, b) : y = M(y_0, z).$

Thus

$$c - (1 - \lambda)\epsilon < f(y) = f(M(y_0, z)) \le N(f(y_0), f(z))$$
$$\le \lambda \max\{f(y_0), f(z)\} + (1 - \lambda) \min\{f(y_0), f(z)\}$$
$$< \lambda c + (1 - \lambda)(c - \epsilon) = c - (1 - \lambda)\epsilon.$$

This contradicts relation (*).

- **Remark 4.** 1. If M = N = A, we get the following classical result: If $f : (a, b) \to \mathbb{R}$ is Jensen-convex, and bounded from above, then it is constant ([5]).
 - 2. For M = N = L, $\lambda = \frac{1}{2}$ we get that if f is L-convex, and bounded from above, then it is constant (Z. Kominek, T. Zgraja [9]).

Remark 5. *Finally, we mention two results wich have been proved in 1998 by the first author* [7]:

Theorem 10. Let $f \in C[a, b]$ be strictly increasing such that $1/f^{-1}$ is a convex function (where f^{-1} is the inverse function of f). Then f is an (L, \mathfrak{I}) -convex function, where L is the logarithmic mean and \mathfrak{I} is the integral mean.

Theorem 11. Let $f \in C[a, b]$ be strictly increasing such that f^{-1} is log-convex. Then f is (I, \mathfrak{I}) -concave function, where I is the identric mean, and \mathfrak{I} is the integral mean.

References

- [1] Bullen, P. S. (2003) Handbook of means and their inequalities, Kluwer Acad. Publ.
- [2] Matkowski, J. & J. Rätz (1997) Convex functions with respect to an arbitrary mean, *Intern. Ser. Num. Math.*, 123, 249–258.
- [3] Matkowski, J. & J. Rätz (1997) Convexity of the power functions wirh respect to symmetric homogeneous means, *Intern. Ser. Num. Math.*, 123, 231–247.
- [4] Matkowski, J. (2003) Affine and convex functions with respect to the logarithmic mean, *Colloq. Math.*, 95, 217–230.
- [5] Roberts, A. W. & D. E. Varberg (1973) Convex functions, Academic Press.
- [6] Sándor, J. (1990) On the identric and logarithmic means, Aequationes Math., 40, 261–270.
- [7] Sándor, J. (1998) *Inequalities for generalized convex functions with applications*, Babeş–Bolyai Univ., Cluj, Romania (in Romanian).
- [8] Sándor, J. & B. A. Bhayo (2015) On some some inequalities for the identric, logarithmic and related means, *J. Math. Ineq.*, 9(3), 889–896.
- [9] Zgraja, T. & Z. Kominek (1999) Convex functions with respect to logarithmic mean and sandwich theorem, *Acta Univ. Car.–Math. Phys.*, 40(2), 75–78.
- [10] Zgraja, T. (2005) On continuous convex or concave functions with respect to the logarithmic mean, Acta Univ. Car.–Math. Phys., 46(1), 3–10.