Embedding index in some classes of graphs

$\mathbf{M}.$ Kamal Kumar¹ and R. Murali²

¹ Department of the Mathematics, CMR Institute of Technology Bangalore 560037, India e-mails: kamalmvz@gmail.com

 2 Department of the Mathematics, Dr. Ambedkar Institute of Technology Bangalore, India e-mail: muralir2968@gmail.com

Abstract: A Subset *S* of the vertex set of a graph *G* is called a dominating set of *G* if each vertex of *G* is either in *S* or adjacent to at least one vertex in *S*. A partition $D = \{D_1, D_2, ..., D_k\}$ of the vertex set of *G* is said to be a domatic partition or simply a *d-*partition of *G* if each class *Di* of *D* is a dominating set in *G.* The maximum cardinality taken over all *d-*partitions of *G* is called the domatic number of *G* denoted by *d* (*G*). A graph *G* is said to be domatically critical or *d*-critical if for every edge *x* in *G*, $d(G - x) < d(G)$, otherwise *G* is said to be domatically non *d-*critical. The embedding index of a non *d-*critical graph *G* is defined to be the smallest order of a *d*-critical graph *H* containing *G* as an induced subgraph denoted by $\theta(G)$. In this paper, we find the $\theta(G)$ for the Barbell graph, the Lollipop graph and the Tadpole graph. **Keywords:** Domination number, Domatic partition, Domatic number, *d-*Critical graphs. **AMS Classification:** 05C69.

1 Introduction

A subset *S* of the vertex set of a graph *G* is called a dominating set of *G* if each vertex of *G* is either in *S* or adjacent to at least one vertex in *S*. A partition $D = \{D_1, D_2, ..., D_k\}$ of the vertex set of *G* is said to be a domatic partition or simply a *d-*partition of *G* if each class *Di* of *D* is a dominating set in *G.* The maximum cardinality taken over all *d* partitions of *G* is called the domatic number of *G* denoted by *d*(*G*).

A graph *G* is said to be domatically critical or *d-*critical if for every edge *x* in *G*, $d(G - x) < d(G)$, otherwise G is said to be domatically non d-critical. This concept was introduced by E. J. Cockayne and S*.* T. Hedetniemi in [3]. Further study on this class of graphs was carried out by B. Zelinka [1], D. F. Rall [2], H. B. Walikar, A. P. Deshpande, Savita Basapur and L. Sudershan Reddy [7, 8, 9 10].

It is not difficult to see that $d(G) - 1 ≤ d(G − x) ≤ d(G)$ for any edge *x* in *G* and thus, the *d*-critical graphs may also be defined as those graphs *G* for which $d(G - x) = d(G) - 1$ holds for every edge *x* in *G.* Graphs that are critical with respect to a given property frequently play an important role in the investigation of that property. The critical concept in graph theory was introduced by Dirac [6] in 1952 with respect to chromatic number of a graph mainly to study the four color conjecture. In [7, 8] it was proved that "Every non *d-*critical graph can be embedded in some *d-*critical graph" by constructing a *d-*critical graph of order 2*p* containing a given non *d-*critical graph of order *p*. Also, the path *P*3*n*–1, a non *d-*critical graph can be viewed as an induced subgraph of the cycle C_{3n} , a *d*-critical graph. The embedding index of a non *d-*critical graph *G* is defined to be the smallest order of *d-*critical graph *H* containing *G* as an induced subgraph denoted by $\theta(G)$, i.e., $\theta(G) = \min \{p(H) - p(G) : H \in F\}$ where *F* is the family of all *d-*critical graphs *H* containing *G* as an induced subgraph (*p*(*H*) denotes the order of *H*).

It is obvious that $1 \leq \theta(G) \leq p(G)$ for any non *d*-critical graph *G*.

A graph is said to be domatically full if and only if $d(G) = \delta(G) + 1$, where $\delta(G)$ denotes the minimum degree of *G.*

Throughout this paper, by a graph *G* we mean a finite, undirected graph without multiple edges or loops. By *Km* & *Pn* we mean a complete graph of m vertices and a path of *n* vertices.

2 Preliminary results

Theorem 2.1 [1]. Let *G* be a domatically critical graph with domatic number $d(G) = d$. Then the vertex set $V(G)$ of *G* is the union of *d* pair wise disjoint sets V_1 , V_2 , V_3 , ..., V_d with the property that for any two distinct integers *i*, *j* ; $1 \le i, j \le d$, the subgraph G_{ij} of G induced by the set $V_i \cup V_j$ is a bipartite graph on the sets V_i , V_j all of whose connected components are stars.

Theorem 2.2 [1]. A regular domatically full graph *G* with *n* vertices and with a domatic number *d* exists if and only if *d* divides *n*. Such a graph is also domatically critical.

Theorem 2.3 [9]. If *G* is regular and domatically full, then *G* is domatically critical, however the converse is not true.

Theorem 2.4 [8]. If *G* is a domatically full graph in which every edge is incident with a vertex of minimum degree, then *G* is *d-*critical.

Theorem 2.5 [12]. Let $G = C_n$. Then, $d(G) = \begin{cases} \infty & n \text{ since } C_1 \\ 2 & \text{Otherwise} \end{cases}$ $\equiv 0 \mod 3$ $\overline{\mathcal{L}}$ $=\begin{cases} 3 & n \equiv 0 \mod 3 \\ 2 & Otherwise \end{cases}$ *d G* 0mod3 2 $3 \text{ } n \equiv 0 \mod 3 \}, n > 2, n \in \mathbb{N}.$

2.1 Examples

Figure 1 below shows a non *d-*critical graph *G* and it is easy to see that there exists no *d-*critical graph of order six containing *G* as an induced subgraph, thus $\theta(G) \geq 2$.

Figure 1. Non *d-*Critical graph *G*

Next, we consider the graph *H* in Figure 2 which contains graph *G* as an induced subgraph, whose vertex set $V(H) = V(G) \cup \{u, v\}$ and the edge set $E(H) = E(G) \cup \{uv, uu_4, vu_1\}.$ The partition $D = \{D_1 = \{u_2, u\}, D_2 = \{u_1, u_4\}, D_3 = \{u_3, u_5, v\}\}\$ is a *d*-partition of *H* and thus $d(H) \ge 3$ with $d(H) \le \delta(H) + 1$. Hence $d(H) = 3 = \delta(H) + 1$, i.e., *H* is domatically full. Also it can be seen from Figure 2 that every edge of *H* is incident with vertex of minimum degree 2.

By Theorem 2.4, *H* is *d-*critical and it contains *G* as an induced subgraph. Hence, $\theta(G) = 2$.

Figure 2. *d-*Critical graph *H* (containing *G*)

3 Definitions

Definition 3.1: Barbell graphs. A (*N*, *n*) Barbell graph is the graph obtained by connecting *N* copies of the complete graph K_n by a bridge. It is denoted by $B(N, n)$.

Definition 3.2: Lollipop Graph. A (m, n) Lollipop graph is the graph obtained by joining a complete graph K_m to a path P_n with a bridge. It is denoted by $L(m, n)$.

Definition 3.3: Tadpole graph. A (m, n) Tadpole graph is the graph obtained by joining a cycle C_m to a path P_n with a bridge. It is denoted by $T(m, n)$.

Definition 3.4: A graph G is called **indominable** if its vertex set can be partitioned into independent dominating sets.

Definition 3.5: A dominating set *D* of a graph *G* is called an **independent dominating set** of *G* if *D* is independent in *G.*

Figure 3. *B*(2, 4) Barbell graph

Figure 4. *L*(4, 3) Lollipop graph

Figure 5. *T*(3, 3) Tadpole graph

4 Main results

Theorem 4.1. Let $G = B(2, n)$. Then, $\theta(G) = 2$.

*Proof***.** Let *H* be a *d*-critical graph containing *G* has an induced subgraph with $d(H) = k \ge 2$. Then by Theorem 2.1 the vertex set $V(H)$ can be partitioned into dominating sets $D_1, D_2, ..., D_k$ such that *D_i* is independent and $\langle D_i \cup D_j \rangle$ is union of stars for $i \neq j$ and $i, j \in \{1, 2, ..., k\}$. Define $D_i^1 = D_i \cap V(G)$ for $i = 1, 2, ..., k$. Then D_i^1 $i = 1, 2, ..., k$ are independent and $\langle D_i^1 \cup D_j^1 \rangle$ is a union of either stars or isolated vertices or both or empty graphs.

Therefore the vertices of *G* are distributed in D_i for $i = 1, 2, ..., k$. Thus each D_i will contain at least one vertex other than the vertices of *G*. Thus $p(H) \ge 2n + k \ge 2n + 4$ since $k \geq 2$. Therefore $\theta(G) \geq 2$.

Label the vertices of the two copies of K_n in G as $u_1, u_2, ..., u_n$ and $v_1, v_2, v_3, ..., v_n$ where u_n and v_n are of degree *n*. Let *H* be a super graph containing *G* as an induced subgraph. The graph *H* is obtained from *G* by adding two new vertices w_1 and w_2 such that vertices $u_1, u_2, u_3, \ldots, u_{n-1}, w_2$ are adjacent to w_1 and vertices $v_1, v_2, v_3, \ldots, v_{n-1}, w_1$ are adjacent to *w*₂. Now, the graph *H* will be *n* regular with $D_1 = \{u_n, w_2\}$, $D_2 = \{v_n, w_1\}$, $D_3 = \{u_1, v_1\}$, $D_4 = {u_2, v_2}$, …, $D_{n+1} = {u_{n-1}, v_{n-1}}$ as its domatic partitions.

Thus $d(H) \ge 2$ but $d(H) \le \delta(H) + 1 = n + 1$. Furthermore *H* is *d*-critical since every edge in *H* is incident with a vertex of minimum degree ($\delta(H) = n$) and it is domatically full. Therefore we have $\theta(G) \le 2$. Hence $\theta(G) = 2$.

Figure 6. Graph *H* containing (2, 4) Barbell graph as an induced subgraph

Corollary 4.1.1. Let $G = L(n, 1)$. Then $\theta(G) \leq n+1$.

*Proof***.** By adding the $n-1$ vertices to $L(n, 1)$, a $(2, n)$ Barbell graph can be constructed from $L(n, 1)$. Hence the $(2, n)$ Barbell graph is a super graph containing G as an induced subgraph. Therefore, $\theta(L(n,1)) \leq n-1+2 \leq n+1$, Hence the proof.

Figure 7. Graph *H* containing *L*(4, 1) Lollipop graph as an induced subgraph

Theorem 4.2. Let $G = T(3,3n-1)$. Then, $\theta(G) = 2$, $n \in N$.

*Proof***.** Let *H* be a *d*-critical graph containing *G* has an induced subgraph with $d(H) = k \ge 2$. Then by Theorem 2.1 the vertex set $V(H)$ can be partitioned into dominating sets $D_1, D_2, ..., D_k$ such that *D_i* is independent and $\langle D_i \cup D_j \rangle$ is union of stars for $i \neq j$ and $i, j \in \{1, 2, ..., k\}$. Define $D_i^1 = D_i \cap V(G)$ for $i = 1, 2, ..., k$. Then D_i^1 $i = 1, 2, ..., k$ are independent and $\langle D_i^1 \cup D_j^1 \rangle$ is a union of either stars or isolated vertices or both or empty graphs.

Therefore the vertices of *G* are distributed in D_i for $i = 1, 2, ..., k$. Thus each D_i will contain at least one vertex other than the vertices of *G*. Thus $p(H) \ge 3n + 2 + k \ge 3n + 4$ since $k \geq 2$. Therefore $\theta(G) \geq 2$.

Label the vertices of the cycle as u_1, u_2, u_3 and vertices of the path as $v_1, v_2, v_3, ..., v_{3n-1}$. Let *H* be a super graph containing *G* as an induced subgraph which is obtained from *G* by adding two new vertices w_1 and w_2 such that u_1, w_1, w_2, v_{3n-1} forms a path of length three in G.

Then $D_1 = {u_3, v_3, v_6, v_9, ..., w_2}$, $D_2 = {u_1, v_2, v_8, ..., v_{3n-1}}$, $D_3 = {u_2, v_1, v_4, v_7, ..., w_1}$ are the domatic partitions of *H*. Thus $d(H) \ge 2$ but $d(H) \le \delta(H)+1=3$. Further *H* is *d*-critical since every edge in *H* is incident with a vertex of minimum degree ($\delta(H) = 2$) except the edge u_1u_3 . Since $H - u_1 u_3$ is a cycle of length $3n + 4$, by Theorem 2.5, $d(H - u_1 u_3) = 2$ and also domatically full. Therefore, we have $\theta(G) \le 2$. Hence $\theta(G) = 2$.

Figure 8. Graph *H* containing Tadpole graph $T(3, 3n - 1)$ as an induced subgraph

Theorem 4.3. Let $G = T(3,3n)$. Then, $\theta(G) = 1$, $n \in N$.

*Proof***.** Let *H* be a *d*-critical graph containing *G* has an induced subgraph with $d(H) = k \ge 1$. Then by Theorem 2.1 the vertex set $V(H)$ can be partitioned into dominating sets $D_1, D_2, ..., D_k$ such that *D_i* is independent and $\langle D_i \cup D_j \rangle$ is union of stars for $i \neq j$ and $i, j \in \{1, 2, ..., k\}$. Define $D_i^1 = D_i \cap V(G)$ for $i = 1, 2, ..., k$. Then D_i^1 $i = 1, 2, ..., k$ are independent and $\langle D_i^1 \cup D_j^1 \rangle$ is a union of either stars or isolated vertices or both or empty graphs.

Therefore the vertices of *G* are distributed in D_i for $i = 1, 2, ..., k$. Thus each D_i will contain at least one vertex other than the vertices of *G*. Thus $p(H) \ge 3n + 3 + k \ge 3n + 4$ since $k \geq 1$. Therefore $\theta(G) \geq 1$.

Label the vertices of the cycle as u_1, u_2, u_3 and vertices of the path as $v_1, v_2, v_3, ..., v_{3n}$. Let *H* be a super graph containing *G* as an induced subgraph which is obtained from *G* by adding one new vertex w_1 such that u_1, w_1, v_3 forms a path of length two in G. Then $D_1 = \{u_3, v_3, v_6, ..., v_{3n}\}, D_2 = \{u_1, v_2, v_5, ..., v_{3n-1}\}, D_3 = \{u_2, v_1, v_4, v_7, ..., v_{3n-2}, w_1\}$ are the domatic partitions of H. Thus $d(H) \ge 1$ but $d(H) \le \delta(H)+1=3$. Further *H* is *d*-critical since every edge in *H* is incident with a vertex of minimum degree ($\delta(H) = 2$) except edge u_1u_3 . Since *H* − *u*₁*u*₃ is a cycle of length 3*n* + 4, by Theorem 2.5, $d(H - u_1u_3) = 2$ and also domatically full. Therefore we have $\theta(G) \le 1$. Hence $\theta(G) = 1$.

Figure 9. Graph *H* containing Tadpole graph *T*(3,3*n*) as an induced subgraph

Theorem 4.4. Let $G = T(3,3n-2)$. Then, $\theta(G) = 3$, $n > 1$, $n \in \mathbb{N}$.

*Proof***.** Let *H* be a *d*-critical graph containing *G* has an induced subgraph with $d(H) = k \geq 3$. Then by Theorem 2.1 the vertex set $V(H)$ can be partitioned into dominating sets $D_1, D_2, ..., D_k$ such that D_i is independent and $\langle D_i \cup D_j \rangle$ is union of stars for $i \neq j$ and $i, j \in \{1, 2, ..., k\}$. Define $D_i^1 = D_i \cap V(G)$ for $i = 1, 2, ..., k$. Then D_i^1 $i = 1, 2, ..., k$ are independent and $\langle D_i^1 \cup D_j^1 \rangle$ is a union of either stars or isolated vertices or both or empty graphs.

Therefore the vertices of *G* are distributed in D_i for $i = 1, 2, ..., k$. Thus each D_i will contain at least one vertex other than the vertices of *G*. Thus $p(H) \ge 3n + 1 + k \ge 3n + 4$ since $k \ge 3$. Therefore $\theta(G) \geq 3$.

Label the vertices of the cycle as u_1, u_2, u_3 and vertices of the path as $v_1, v_2, v_3, ..., v_{3n-2}$. Let *H* be a super graph containing *G* as an induced subgraph which is obtained from *G* by adding three new vertices w_1, w_2 and w_3 such that $u_1, w_1, w_2, w_3, v_{3n-2}$ forms a path of length four. Then $D_1 = {u_3, v_3, v_6, ..., v_{3n-3}, w_2}$, $D_2 = {u_1, v_2, v_5, ..., v_{3n-4}, w_3}$, $D_3 = {u_2, v_1, v_4, v_7, ..., v_{3n-2}, w_1}$ are the domatic partitions of *H*. Thus $d(H) \ge 3$ but $d(H) \le \delta(H)+1=3$. Further *H* is *d*-critical since every edge in *H* is incident with a vertex of minimum degree ($\delta(H) = 2$) except edge *u*₁*u*₃. Since *H* − *u*₁*u*₃ is a cycle of length 3*n* + 4, by Theorem 2.5, *d*(*H* − *u*₁*u*₃) = 2 and also domatically full. Therefore we have $\theta(G) \leq 3$. Hence $\theta(G) = 3$.

Figure 10. Graph *H* containing Tadpole graph $T(3, 3n - 2)$ as an induced subgraph

For $n = 1$, $\theta(T(3,1)) = 1$. Let *H* be a super graph containing *T*(3, 1) as an induced subgraph. The graph *H* is obtained from $T(3, 1)$ by adding one new vertex w_1 such that w_1 is adjacent to u_3 and v_1 . Then $D_1 = \{u_3\}$, $D_2 = \{u_1, v_1\}$, $D_3 = \{u_2, w_1\}$ is the domatic partition of *H*. Removal of any edge decreases the domatic partition.

Hence *H* is *d*-critical.

Figure 11. Graph *H* containing Tadpole graph *T*(3, 1) as an induced subgraph

References

- [1] Zelinka*,* B. (1980) Domatically critical graphs, *Czechoslovak Math. L.*, 30(3), 486–489.
- [2] Rall, D. F. (1990) Domatically critical and domatically full graphs, *Disc. Math.* 86, 81–87.
- [3] Cockayne, E. L. & Hedetniemi, S*.* T. (1976) Disjoint independent dominating sets in graphs, *Disc. Math.* 15, 213–222.
- [4] Cockayne, E. L. & Hedetniemi, S*.* T. (1977) Towards a Theory of domination in graphs*, Networks*, 7, 247–261.
- [5] Harary, F. (1972) *Graph Theory*, Addison Wesley, Reading Mass.
- [6] Dirac, G. A. (1952) A property of 4-chromatic graphs and some remarks on critical graphs, *Journal of London Mathematical Society*, 27, 85–92.
- [7] Walikar, H. B. & Deshpande, A. P. (1994) Domatically critical graphs, *Proc. of National Seminar on Recent Developments in Mathematics*, Karnatak University, Dharwar, 27–30.
- [8] Walikar, H. B. & Savitha Basapur. (1996) Deficiency of Non *d-*critical graphs, *Proc. of National workshop on Graph theory and its applications*, Manomaniam Sundaranar University, Tirunelveli, Feb 21–27, 1996, 235–242.
- [9] Walikar, H. B. (1996) Domatically Critical and Co-critical Graphs, *Proc. of National workshop on Graph theory and its applications*, Manomaniam Sundaranar University, Tirunelveli, Feb 21–27, 1996, 223–234.
- [10] Walikar, H. B. & Acharya, B. D. (1979) Domination critical graphs, *National academy of sciences* 2, 70–72.
- [11] Sudershan Reddy, L. (2006) *The Theory of Domination in Graphs & Related Topics*, PhD Thesis, Karnatak University.
- [12] Arumugam, S., Raja Chandrasekar, K. (2012) Minimal Dominating sets in Maximum domatic partitions, *Australian Journal of Combinatorics*, 52, 281–292.