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1 Introduction

The general number sequence as defined in [1] is a sequence whose terms satisfy the recurrence
relation

wn = pwn−1 − qwn−2 (1)

with initial values w0 = a and w1 = b. Here, a, b, p and q ∈ Z. The n-th term of the general
number sequence is given by:

wn =
Aαn +Bβn

α− β
(2)

where

A = b− aβ
B = aα− b

α + β = p

αβ = q

α− β =
√
p2 − 4q 6= 0

The numbers α and β are the roots of the equation x2−px+q = 0.
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A right circulant matrix with general number sequence is a matrix of the form

RCIRCn(~w) =



w0 w1 w2 ... wn−2 wn−1

wn−1 w0 w1 ... wn−3 wn−2

wn−2 wn−1 w0 ... wn−4 wn−3

...
...

... . . . ...
...

w2 w3 w4 ... w0 w1

w1 w2 w3 ... wn−1 w0


,

where wk are the first n terms of the general number sequence.

2 Preliminary result

The following lemma will be used to prove one of the main results.

Lemma 2.1.
n−1∑
k=0

(rω−m)k =
1− rn

1− rω−m

where ω = e2iπ/n.

Proof: Note that
∑n−1

k=0(rω
−m)k is a geometric series with first term 1 and common ratio rω−m.

Using the formula for the sum of a geometric series, we have

n−1∑
k=0

(rω−m)k =
1− rnω−mn

1− rω−m

=
1− rn(cos 2π + i sin 2π)

1− rω−m

=
1− rn

1− rω−m

This completes the proof. �

3 Main results

Theorem 3.1. The eigenvalues of RCIRCn(~w) are given by

λm =
1

α− β

[
A(1− αn)
1− αω−m +

B(1− βn)
1− βω−m

]
where m = 0, 1, ..., n− 1.

Proof: From [2], the eigenvalues of a right circulant matrix are given by the Discrete Fourier
transform

λm =
n−1∑
k=0

ckω
−mk (3)
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where ck are the entries in the first row of the right circulant matrix. Using this formula, the
eigenvalues of RCIRCn(~w) are

λm =
n−1∑
k=0

[
Aαk +Bβk

α− β

]
ω−mk

=
1

α− β

n−1∑
k=0

[
Aαk +Bβk

]
ω−mk.

Using Lemma 2.1 we get the desired equation. �

Theorem 3.2. The Eucliden norm of RCIRCn(~w) is given by

‖RCIRCn(~w)‖E =
1

|α− β|

√
n

[
2AB(1− qn)

1− q
+
A2(1− α2n)

1− α2
+
B2(1− β2n)

1− β2

]
.

Proof:

‖RCIRCn(~w)‖E =

√√√√n
n−1∑
k=0

[
Aαk +Bβk

α− β

]2

=

√√√√n
n−1∑
k=0

[
A2α2k +B2β2k + 2ABαβ

(α− β)2

]

=
1

|α− β|

√√√√n
n−1∑
k=0

[A2α2k +B2β2k + 2ABαβ]

=
1

|α− β|

√√√√n
n−1∑
k=0

[A2α2k +B2β2k + 2ABq].

Note that each term in the summation is from a geometric sequence, so using the formula for
sum of geometric sequence, the theorem follows. �

Theorem 3.3. The inverse of RCIRCn(~w) is given by

RCIRCn (s0, s1, . . . , sn−1)

where

sk =
α− β
n

n−1∑
m=0

[
(1− αω−m)((1− βω−m)ωmk

A(1− αn)(1− βω−m) +B(1− βn)(1− αω−m)

]
.

Proof: The entries of the inverse of a right circulant matrix can be solved using the Inverse
Discrete Fourier transform

sk =
1

n

n−1∑
m=0

λ−1
m ωmk (4)
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where λm are the eigenvalues of the right circulant matrix. Using this equation and Theorem 3.1
we have

sk =
1

n

n−1∑
m=0

[
1

α− β

[
A(1− αn)
1− αω−m +

B(1− βn)
1− βω−m

]]−1

ωmk

=
α− β
n

n−1∑
m=0

[
A(1− αn)
1− αω−m +

B(1− βn)
1− βω−m

]−1

ωmk

=
α− β
n

n−1∑
m=0

[
(1− αω−m)(1− βω−m)ωmk

A(1− αn)(1− βω−m) +B(1− βn)(1− αω−m)

]
.

This completes the proof. �
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