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1 Introduction

A certain generalization of Jacobsthal numbers in the form

st — (—=t)"

Js,t:
" s+t

) €]

where n > 0 is a natural number and s # —t are arbitrary real numbers was introduced (see [2]
and [3]). As an analogue, a modification of Jacobsthal-Lucas numbers in the form

gt =s" 4 (—t)", (2)

where n is a natural number and s and ¢ are arbitrary real numbers was proposed [13]. In [10],
Rabago studied some elementary properties of these two modifications. For instance, the follow-
ing relations were obtained in [10]:

JV = (="t vneN; (3)

i = (=", ¥n eN; 4)
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Jobget 4 gst st =205 (5)

gl A (s H 2Tt = 250 (6)
Tolgat = gutaet = 2(=st)"Jyl,, n<m; (7)
galant = (s + 2Tt = 2(=st) jy, n<m; (8)
Galist = G + (=) gl < m; ©)
Tatint = Jpn + (=) Jpl, n<m; (10)
(2" = (s + )2 (J31)" = a(=st)", (11)

where m and n are natural numbers. Also, in [11], Rabago obtained several identities for modified
Jacobsthal and Jacobsthal-Lucas numbers using matrix algebra. Recently, Arunkumar, Kannan
and Srikanth [1] presented two new properties involving other modifications of Jacobsthal num-
bers. Particularly, they obtained the following results:

n—1
(2m +3)JP! = (m+1)) ( )2n—fjgﬂ_x
=0
where 2m + 3 and 2m + 1 are both prime numbers and 7 is any natural number, and

<2fs+1 + fs)JF§+2 > fs+1<]F7f~

Here, JP}' and JF), are certain modifications of Jacobsthal numbers as defined by Atanassov
in [3]. In this note, we present more results concerning the modifications of Jacobsthal and
Jacobsthal-Lucas numbers given by equations (1) and (2).

2 Main results

We start-off in proving the following results using the identities presented in the previous section.
Theorem 2.1. For every natural number n, we have
Tow = Gnt It (12)

Proof. The proof is straightforward. Using (1) yields

n+n _ (__ \n+n n _ (_4+\n n _ (_+\n
P el G0 (&) () (M> — s (13)

s+t s+t

]
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Theorem 2.2. Let s # —t be real numbers. We have, for every natural numbers k and n,

Ton = G5 Tanny = (=8O ) (14)

Proof. We use equation (5) to prove the theorem, that is,

s,t
Jkn

which is desired.

‘]I:ik(n—l)

% (ji’tJi&Ll) + Jli’%’(lq))

5 (Tt Ty — 20 T )

BTy — (=sOR T ) (15)
]

Theorem 2.3. Let s and t be real numbers. We have, for every natural numbers k and n,

-s,t -8t

Jz;i =k In(n-1) — (_St)ka’(il—m' (16)

Proof. We follow the proof of the previous theorem. That is, by using equation (6), we get

-5,
Jkn

This proves the theorem.

-5,
Jk+k(n—1)

1 -s,t -8, s,t 18,t

B (Jk Ty T (8 12T Jk(n—l))

1 -s,t -s,t -s,t -8t k -s,t

B (Jk Irin—1) T Ik Jrin_1y — 2(=st) Jk(n_2)>

I drnn) = (=56  Gi ) (17)

O

Theorem 2.4 (Multiple-angle formulas). Let s # —t be real numbers. We have, for every natural

numbers k and n,

s7t J—
Jkn -

;

L(k—1)/2]

2k—1
=0

(s+1)*

i (st 201 () k—(2i+1)
(2¢+1) (s + 6" (L™ @) (18)
k k ‘ .
S (V) Ga) ) ok ven
1=0
(19)
G 2 (DT ()J G Get)'s for k odd.
=0
(s () (k) > 1, (20)
T () 1)
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Proof. We let s # —t be real numbers and n, k € N. It can be shown easily that

gt A+ (s + 1),
2

n o __

, VneN

N AN t s,t
O A

S7t J—
Jkn -

(22)

(23)

= e { ) w3 G e+ (oot o

[ (usr o)

L(k—1)/2]

1 k: ) S i ] k_(i )
= 71 2 (2¢+1> (s + 0% (2" G
i=0

proving equation (18).

It can also be seen easily that
.5t .5t
stjaiq + ]Z+1

st —
I (s +1)2

, VneN
and
Gt =St + I, YneN.

Hence, it is true that
Sn M

, VnéeN,
s+t
and
Sjs’t _js’t1
(—t)" = =22 yneN.
s+t
So we have

Skn - (_t)kn

s+t

k -5t -5t k
_ 1 t]n + ]n—‘rl N Sl — jnll—l
s+t s+t s+t

S7t —
Jkn -

- e (e () e et g s

=0

1=0

\ =0
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On the other hand, it is also true that

and

So we have

s,t
‘]kn

or equivalently,

s,t
Jkn

s"=sJo £ stJY, ¥n €N

(=) = (=t)J>* + stJ>',, VneN.

Sk:n o (_t)k‘n

s+t

(st st ) = (=)t + st )]

Sk*i o (_t)kfl

t
() () e ety
(

e ) )

(’?) (st =5 (72 (254)F > 1

]

Moreover, it can be verified that

and

This yieds

S7t JR—
‘]kn -

s"=J0 + I, VneN

(=) = J2, —sJS YneN.

Skn o (_t)kn

1

S

s+t

k

D

1=0
k

D

1=0

(
(

+1
(s + )" = (ks = s)")

e () e )

]

k

)t ) )

proving equation (21). This completes the proof of the theorem.

We also have the following theorem for modified Jacobsthal-Lucas numbers.
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Theorem 2.5 (Multiple-angle formulas). Let s # —t be real numbers. We have, for every natural

numbers k and n,

1 & k ; 2i k—2i
= (QZ) (s+0)% (J)" (5) (37)
=0
( b k - .
W Z(—l)wrl (Z>JZEZ (j2h) - (j,sl’il)l . fork even ;
i=0
- (38)
F k fi A
e 0 (V) 7 G ok o
\ i=0
kg .
= Z(Z)(St)k i St(Jst> ((]Zfl)k—z’ n>17 (39)
i=0
ko ke A s
= (i)ﬁ’f (J2) (Jna)™ (40)
i=0
Proof. The proof follows the same argument as in the previous theorem so we omit it. O

For the following theorems (Theorems 2.6 — 2.10), we shall use an approach similar to Panda
and Rout [8] which has been inspired by an earlier result of Behera and Panda [4] on balancing
numbers (see also [7]).

Theorem 2.6 (Sum of the first n odd indices). Let J' denote the n-th modified Jacobsthal num-
ber where s # —t are real numbers. We have, for all natural number n,

ZJ;L (12)? = st=-1. (41)

Proof. Let J5 denote the n-th modified Jacobsthal number where s # —t are real numbers and

n € N. Suppose >0 Js' | = (J51)? holds. Hence, using (1), we have

g1 _ (_t>n71 2 g2n—1 _ (_t)anl L N2 .
= (J3 i
( S—|—t ) + < S—f-t ) ( nfl) + 2n—1

2
1

= Z J2z+1 + J2n 1
=0

_ s,t
- ‘]2i+1

=0
(s = (=)
N s+t ’
It follows that,

() () ()




or equivalently,
(5 — (=) (*F = (=t)* 1) = (87" — 2(—st)" + 1*") — (572 — 2(—st)" L 4 2",
Expanding the left hand side of the above equation and after some algebra we obtain
(—st) (s 2 4 12"72) = 272 1272 L (—st) H(—st — 1),
which can be further expressed as
(—st —1)(s" 7t = (=t)" )2 = (=st — 1)(s*"2 = 2(—st)"' + (=t)*%) = 0.

Hence, either st = —1 or s" 1 = (=)7L If s"~! = (—¢)"!, then s = Ft. By assumption,
s # —tsos = t. Suppose s = t, then J*' = % It follows that, for even integer n
(ie. n = 2k, k € N), J5' = 0, and for odd integer n, J;; | = s*72 So S,_, Jsi | =
S (s)F = 555:11. If n is even, then 852;__11 = 0sos =t = 1. This implies that, for even
integer n, S p_ Joi = Y01 =n =0 = (J>)?, a contradiction to our assumption that
n € N. If n is odd, then £;=1 = (J54)? = (s"~)? or equivalently, s*" — 1 = s> — s2"~2. So we
have s = 1 which will lead to a contradiction. We conclude that st = —1.

Conversely, if —st = 1, then we have

(3?2 = (Jh))? = (%)2_(%1 - i_tt)nl)z

S2n _ 2(—St)n + t2n _ (52n72 _ 2(_St>n71 + t2n72)

(s+1)?
(P (s 4 (7 (—st) (-t
(s +1)?
_ s s = (=) = (=) (s — (=)
(s+1)2
82n—1 _ (_t)2n—1 ot
= s+t = Yon—1-
Hence, (J2%)? — (J2')? = J5' |. Rearranging the equation and noting that (J2',)? =
S gt yields Y st = S 2 st 4 Jat = (J2%)?. This completes the proof of the
theorem. []

Theorem 2.7 (Sum of the first n even indices). Ler J5' denote the n-th modified Jacobsthal

number where s #+ —t are real numbers. We have, for all natural number n,
NIt =T = —st=1 (42)
i=0

Proof. Let J*' denote the n-th modified Jacobsthal number where s # —t are real numbers and

n € N. Note that for any nonzero number s = ¢, J5' = Sn_s(;ts)n = 0 for all even integer n > 0.

n—1 st o it st . . . . .
So ) iy Jay = 0= JJ:, is trivially true (because either n or n + 1 is even). Hence, we
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may assume (WLOG) that s # t. The rest follows the proof of the previous theorem. Suppose
St Jet = JSt3Y, is true for nonzero real numbers s # +t. Hence, we have

n—1
st st st s,t st 7s,t 78t
Jn—l‘]n + J2n - E JQi + JQn - Jn Jn—i—l’
=0

which can be expressed as JJ5 — J2t Jst = J5. Using (1), we obtain

n_ ()" n+l —t n+1 n—1 _ —t n—1
s -ty = SR (R S B

s+t s+t s+t
B S2n+1 + (_t)2n+1 _ (SQn—l + (_t)Qn—l)
(s +t)?
B (—st)"(s —t) — (—st)" s —t)
(s+t)?

S2n _ (_t)Qn et
= —— = Jg,-

s+t

Hence, by rearranging the terms, we get

(5= ()2 = (<)) = $H () (501 4 (g
— (=st)"(s —t) + (—st)" (s —1).

After some algebraic manipulations, we obtain
(st + D[(s™ 7 + (=) 71) = (=st)" (s — )] = 0.

It follows that, either —st = 1 or (s*"~! + (—¢)>""!) = (—st)" (s — t). The latter equation
is true for all n € N provided s = ¢ but, we restrict s # +t, so we conclude that —st = 1.

Conversely, suppose that —st = 1. Then, it can be verified easily (as in the proof of Theorem
(2.6)) that J3t(J2f, — J2t,) = Ja*. This proves the theorem. O

Note that by using (2.1), we can easily see that, for s # £¢t, > o > T = JtJ21 | if and

(2 K3

only if —st = 1.

Theorem 2.8. Let J:" and j5* denote the n-th modified Jacobsthal number and Jacobsthal-Lucas
number where s # —t are real numbers. We have, for all natural number n,

(s+1)?

(721 = (—st)" + 7 (2?2 (43)

Proof. Let J2' and j5' denote the n-th modified Jacobsthal number and Jacobsthal-Lucas num-
ber where s # —t are real numbers. Note that

e ( - <—t>n>2 S (0 = 2st)

s+t (s +1)?

Rearranging the equation and doing some algebraic manipulations, we have

(s +1)*(J3")? §°" 4 2(—st)" + (=1)™" (3" + (—t)2>2 '

4

—st)" = _
+ (—st) 1 5
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Using (2), we can express the above equation as follows

(24)? = (—styr + B

which is the desired result. ]

s,t2
J27,

The following theorem can be veified easily (see equation (24) in [11]).

Theorem 2.9. Ler j5' denote the n-th modified Jacobsthal-Lucas number with —st < 0 and
defined w,, = j3'/2. So the sequence {w, }2, satisfies the recurrence relation w, 1 = (s —
t)w, + stw,_1 and is an integer sequence if s — t is even with integers s and t.

Note that wy = ji*/2 = 1 and w;, = j;*/2 = (s — t)/2 and since w,, satisfies a recurrence
relation identical to J5' then w, is indeed an integer sequence whenever s — ¢ is even. Now,
suppose that —st = 1 and s — ¢ = 2/ for some [ € N. Then, solving for s we obtain s =
l++/I2—1.1f] = 1, then we see that s = 1 = —(—1) = —(—t) which is forbidden. So [ > 1
and this implies that (s — ¢)? = 41? > 4 or equivalently, (s — ¢)> —4 > 0. Letn € N with n > 1
and denote (a, b) as the greatest common divisor of a and b. So (J2*, w,,) = (J2*, j5/2) = 1.

Theorem 2.10. Let J5* denote the n-th modified Jacobsthal number with —st = 1 and s — t be
even. We have, for any natural numbers m and n,

n|lm << J¥|JH

Proof. Let J:' denote the n-th modified Jacobsthal number with —st = 1 and s — ¢ be even.
Suppose n|m, i.e. m = n(k — 1) for some k € N. Replacing m by n(k — 1) in (5), we obtain
st 5t
(Tt Ty =t Ty B 2 ey
(T3 T ety n + W1y T3

= ()

Repeatedly applying the same argument, we get (J5t, J5!) = (Jot, Jot) = Jot.
Conversely, suppose that J*|J%t. Then, it follows that n < m and by Euclid’s algorithm,
there exists natural numbers ¢ > 1 and 0 < r < n such that m = nqg + r. Again, using (5),
Tt = (T3 = (T Titar) = (30, T+ wig 2.

n 1 “Yng

Obviously, n divides ng and so, by our previous result, J,j’t|JfL;;. It follows that,
It = (T3 w5, As we have seen earlier (J2f, w,,) = 1 and by iteratively working back-

ngq’
wards, we can show that this yields (J5, w,,) = 1. So J&* = (J5* J5') and this is only possible
for r = 0 since 0 < r < m by assumption. Thus, m = nq which concludes that n divides m.
Here follows the conclusion. O

We note that Theorem (2.10) still holds for s = —t. As we saw earlier, s = [ ++/{? — 1 yields
s = 1 for [ = 1. It was shown in [11] (see equation (52)) that J>~° = ns"! which is easily
obtain by simply letting s — —¢ in (1). So for s = 1 and t = —1, we have J~! = n. Hence, if
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m and n are integers and n|m, then J!>~!|JL.~1. Obviously, the converse of this statement is also
true.

In [6], E. Lucas studied the second-order linear recurrence sequence {u, }> , defined recur-
sively by w10 = Pu,+1 —Qu, with initial values u = 0 and © = 1. He obtained many interesting
properties including sums of reciprocals of {u,,}2° . For instance, he showed that (see equation
(125) in [6]), for k # 0,

= kan_l . Qkuk(QNfl)

Uon UrUpoN

(44)

n=1
In [11], Rabago showed that, via generating functions, (1) and (2) are the Binet’s formulas for
the recurrence relations

o= (s =) st Jt=0, JP'=1, (45)

n

and
Juty = (s =0t +stinty, ggt=2 j=s—t (46)

respectively (see equations (3) and (24) in [11]). He also obtained an analogue of d’Ocagne’s
identity [11]. More precisely, he showed in Theorem 2.16 of [11] that, for s # —t and natural
numbers m and n such that n < m,

Tl Ty = Tt Ty = (=st)" il (47)
Equation (47) is an equivalent form of
Qnilumfn = UpUm—1 — UnUn—1 (48)

for the recurrence sequence {u, }>° , studied by Lucas [6]. As pointed out by Rabinowitz in [12],
equation (48) can be used to express (44) as follows

N n—1
Q" UpeN_1)  Ug—1
=Q — : (49)
712:; Uon UgoN UL
Lucas [6] also found out that, for £ # 0 and p # 0,
N kp™ k
Z Q Uk(p_l)pn — Q uk(pNJrl_l) (50)
=0 Ugpr Ufpn+1 Uk UgpN+1 '

With these results, we can easily obtained the following theorem.

Theorem 2.11. Let J5' denote the n-th modified Jacobsthal number where s and t are real
numbers such that s # +t. We have, for all N € N,

e Lk 78,t 8.t s
= T T o Tan I
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Popov [9] showed that, for all integers 7,

L 2

uy_, ) o, if |B/a| <1,
| g, if |B/al > 1.

where o and /3 are the roots of the quadratic equation 2> — Px + Q = 0. Using these limits,
together with Theorem (2.11), we get the following theorem.

Theorem 2.12. Let J5' denote the n-th modified Jacobsthal number where s and t are real
numbers such that s # +t. We have

O
SR I A
Y= (53)

st
Jk?” s”

S if |B/al > L
k

n=1
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