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1 Introduction

A certain generalization of Jacobsthal numbers in the form

Js,t
n =

sn − (−t)n

s+ t
, (1)

where n ≥ 0 is a natural number and s 6= −t are arbitrary real numbers was introduced (see [2]
and [3]). As an analogue, a modification of Jacobsthal–Lucas numbers in the form

js,tn = sn + (−t)n, (2)

where n is a natural number and s and t are arbitrary real numbers was proposed [13]. In [10],
Rabago studied some elementary properties of these two modifications. For instance, the follow-
ing relations were obtained in [10]:

Js,t
−n = (−1)n+1Js,t

n , ∀n ∈ N; (3)

js,t−n = (−1)njs,tn , ∀n ∈ N; (4)
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Js,t
m js,tn + js,tm J

s,t
n = 2Js,t

m+n ; (5)

js,tm j
s,t
n + (s+ t)2Js,t

m Js,t
n = 2js,tm+n ; (6)

Js,t
m js,tn − js,tm J

s,t
n = 2(−st)nJs,t

m−n, n < m ; (7)

js,tm j
s,t
n − (s+ t)2Js,t

m Js,t
n = 2(−st)njs,tm−n, n < m ; (8)

js,tm j
s,t
n = js,tm+n + (−st)njs,tm−n, n < m ; (9)

Js,t
m js,tn = Js,t

m+n + (−st)nJs,t
m−n, n < m ; (10)

(
js,tn

)2 − (s+ t)2
(
Js,t
n

)2
= 4(−st)n, (11)

wherem and n are natural numbers. Also, in [11], Rabago obtained several identities for modified
Jacobsthal and Jacobsthal–Lucas numbers using matrix algebra. Recently, Arunkumar, Kannan
and Srikanth [1] presented two new properties involving other modifications of Jacobsthal num-
bers. Particularly, they obtained the following results:

(2m+ 3)JP n
s = (m+ 1)

n−1∑
x=0

(
x

n

)
2n−xJm

n−x

where 2m+ 3 and 2m+ 1 are both prime numbers and n is any natural number, and

(2fs+1 + fs)JF
s+2
n > fs+1JF

s
n.

Here, JP n
s and JF s

n are certain modifications of Jacobsthal numbers as defined by Atanassov
in [3]. In this note, we present more results concerning the modifications of Jacobsthal and
Jacobsthal–Lucas numbers given by equations (1) and (2).

2 Main results

We start-off in proving the following results using the identities presented in the previous section.

Theorem 2.1. For every natural number n, we have

Js,t
2n = js,tn J

s,t
n . (12)

Proof. The proof is straightforward. Using (1) yields

Js,t
2n =

sn+n − (−t)n+n

s+ t
= sn

(
sn − (−t)n

s+ t

)
+ (−t)n

(
sn − (−t)n

s+ t

)
= js,tn J

s,t
n . (13)
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Theorem 2.2. Let s 6= −t be real numbers. We have, for every natural numbers k and n,

Js,t
kn = js,tk J

s,t
k(n−1) − (−st)kJs,t

k(n−2). (14)

Proof. We use equation (5) to prove the theorem, that is,

Js,t
kn = Js,t

k+k(n−1)

=
1

2

(
js,tk J

s,t
k(n−1) + Js,t

k js,tk(n−1)

)
=

1

2

(
js,tk J

s,t
k(n−1) + js,tk J

s,t
k(n−1) − 2(−st)kJs,t

k(n−2)

)
= js,tk J

s,t
k(n−1) − (−st)kJs,t

k(n−2), (15)

which is desired.

Theorem 2.3. Let s and t be real numbers. We have, for every natural numbers k and n,

js,tkn = js,tk j
s,t
k(n−1) − (−st)kjs,tk(n−2). (16)

Proof. We follow the proof of the previous theorem. That is, by using equation (6), we get

js,tkn = js,tk+k(n−1)

=
1

2

(
js,tk j

s,t
k(n−1) + (s+ t)2Js,t

k Js,t
k(n−1)

)
=

1

2

(
js,tk j

s,t
k(n−1) + js,tk j

s,t
k(n−1) − 2(−st)kjs,tk(n−2)

)
= js,tk j

s,t
k(n−1) − (−st)kjs,tk(n−2). (17)

This proves the theorem.

Theorem 2.4 (Multiple-angle formulas). Let s 6= −t be real numbers. We have, for every natural
numbers k and n,

Js,t
kn =

1

2k−1

b(k−1)/2c∑
i=0

(
k

2i+ 1

)
(s+ t)2i

(
Js,t
n

)2i+1 (
js,tn

)k−(2i+1) (18)

=



1
(s+t)k

k∑
i=0

(−1)i+1

(
k

i

)
Js,t
k−i
(
js,tn

)k−i (
js,tn+1

)i
, for k even ;

1
(s+t)k+1

k∑
i=0

(−1)i+1

(
k

i

)
js,tk−i

(
js,tn

)k−i (
js,tn+1

)i
, for k odd.

(19)

=
k∑

i=0

(
k

i

)
(st)k−iJs,t

i

(
Js,t
n

)i (
Js,t
n−1
)k−i

, n > 1, (20)

=
k∑

i=0

(
k

i

)
Js,t
−i
(
Js,t
n

)i (
Js,t
n+1

)k−i
. (21)
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Proof. We let s 6= −t be real numbers and n, k ∈ N. It can be shown easily that

sn =
js,tn + (s+ t)Js,t

n

2
, ∀n ∈ N (22)

and

(−t)n =
js,tn − (s+ t)Js,t

n

2
, ∀n ∈ N. (23)

Hence,

Js,t
kn =

skn − (−t)kn

s+ t

=
1

2k(s+ t)

[(
js,tn + (s+ t)Js,t

n

)k − (js,tn − (s+ t)Js,t
n

)k]
=

1

2k(s+ t)

{(
k

0

)(
js,tn

)k
+

(
k

1

)(
js,tn

)k−1
(s+ t)

(
Js,t
n

)
+ · · ·+

(
k

k

)
(s+ t)k

(
Js,t
n

)k
−
[(
k

0

)(
js,tn

)k − (k
1

)(
js,tn

)k−1
(s+ t)

(
Js,t
n

)
+ · · ·+ (−1)k

(
k

k

)
(s+ t)k

(
Js,t
n

)k]}
=

1

2k−1

b(k−1)/2c∑
i=0

(
k

2i+ 1

)
(s+ t)2i

(
Js,t
n

)2i+1 (
js,tn

)k−(2i+1)
, (24)

proving equation (18).
It can also be seen easily that

Js,t
n =

stjs,tn−1 + js,tn+1

(s+ t)2
, ∀n ∈ N (25)

and
js,tn = stJs,t

n−1 + Js,t
n+1, ∀n ∈ N. (26)

Hence, it is true that

sn =
tjs,tn + js,tn+1

s+ t
, ∀n ∈ N, (27)

and

(−t)n =
sjs,tn − j

s,t
n+1

s+ t
, ∀n ∈ N. (28)

So we have

Js,t
kn =

skn − (−t)kn

s+ t

=
1

s+ t

(tjs,tn + js,tn+1

s+ t

)k

−

(
sjs,tn − j

s,t
n+1

s+ t

)k


=
1

(s+ t)k+1

(
k∑

i=0

(−1)i+1

(
k

i

)(
sk−i − (−1)k(−t)k−i

) (
js,tn

)k−i (
js,tn+1

)i)

=



1
(s+t)k

k∑
i=0

(−1)i+1

(
k

i

)
Js,t
k−i
(
js,tn

)k−i (
js,tn+1

)i
, for k even ;

1
(s+t)k+1

k∑
i=0

(−1)i+1

(
k

i

)
js,tk−i

(
js,tn

)k−i (
js,tn+1

)i
, for k odd.

(29)
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On the other hand, it is also true that

sn = sJs,t
n + stJs,t

n−1, ∀n ∈ N (30)

and
(−t)n = (−t)Js,t

n + stJs,t
n−1, ∀n ∈ N. (31)

So we have

Js,t
kn =

skn − (−t)kn

s+ t

=
1

s+ t

[(
sJs,t

n + stJs,t
n−1
)k − ((−t)Js,t

n + stJs,t
n−1
)k]

=
k∑

i=0

(
k

i

)
(st)i

(
sk−i − (−t)k−i

s+ t

)(
Js,t
n

)k−i (
Js,t
n−1
)i

=
k∑

i=0

(
k

i

)
(st)iJs,t

k−i
(
Js,t
n

)k−i (
Js,t
n−1
)i
, (32)

or equivalently,

Js,t
kn =

k∑
i=0

(
k

i

)
(st)k−iJs,t

i

(
Js,t
n

)i (
Js,t
n−1
)k−i

, n > 1. (33)

Moreover, it can be verified that

sn = Js,t
n+1 + tJs,t

n , ∀n ∈ N (34)

and
(−t)n = Js,t

n+1 − sJs,t
n , ∀n ∈ N. (35)

This yieds

Js,t
kn =

skn − (−t)kn

s+ t

=
1

s+ t

((
Js,t
n+1 + tJs,t

n

)k − (Js,t
n+1 − sJs,t

n

)k)
=

k∑
i=0

(
k

i

)
(−1)i+1

(
si − (−t)i

s+ t

)(
Js,t
n

)i (
Js,t
n+1

)k−i
=

k∑
i=0

(
k

i

)
Js,t
−i
(
Js,t
n

)i (
Js,t
n+1

)k−i
, (36)

proving equation (21). This completes the proof of the theorem.

We also have the following theorem for modified Jacobsthal–Lucas numbers.
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Theorem 2.5 (Multiple-angle formulas). Let s 6= −t be real numbers. We have, for every natural
numbers k and n,

js,tkn =
1

2k−1

bk/2c∑
i=0

(
k

2i

)
(s+ t)2i

(
Js,t
n

)2i (
js,tn

)k−2i (37)

=



1
(s+t)k+1

k∑
i=0

(−1)i+1

(
k

i

)
js,tk−i

(
js,tn

)k−i (
js,tn+1

)i
, for k even ;

1
(s+t)k

k∑
i=0

(−1)i+1

(
k

i

)
Js,t
k−i
(
js,tn

)k−i (
js,tn+1

)i
, for k odd.

(38)

=
k∑

i=0

(
k

i

)
(st)k−ijs,ti

(
Js,t
n

)i (
Js,t
n−1
)k−i

, n > 1, (39)

=
k∑

i=0

(
k

i

)
js,t−i
(
Js,t
n

)i (
Js,t
n+1

)k−i
. (40)

Proof. The proof follows the same argument as in the previous theorem so we omit it.

For the following theorems (Theorems 2.6 – 2.10), we shall use an approach similar to Panda
and Rout [8] which has been inspired by an earlier result of Behera and Panda [4] on balancing
numbers (see also [7]).

Theorem 2.6 (Sum of the first n odd indices). Let Js,t
n denote the n-th modified Jacobsthal num-

ber where s 6= −t are real numbers. We have, for all natural number n,

n−1∑
i=0

Js,t
2i+1 =

(
Js,t
n

)2 ⇐⇒ st = −1. (41)

Proof. Let Js,t
n denote the n-th modified Jacobsthal number where s 6= −t are real numbers and

n ∈ N. Suppose
∑n−1

i=0 J
s,t
2i+1 = (Js,t

n )
2 holds. Hence, using (1), we have(

sn−1 − (−t)n−1

s+ t

)2

+

(
s2n−1 − (−t)2n−1

s+ t

)
=

(
Js,t
n−1
)2

+ Js,t
2n−1

=
n−2∑
i=0

Js,t
2i+1 + Js,t

2n−1

=
n−1∑
i=0

Js,t
2i+1

=

(
sn − (−t)n

s+ t

)2

.

It follows that,(
s2n−1 − (−t)2n−1

s+ t

)
=

(
sn − (−t)n

s+ t

)2

−
(
sn−1 − (−t)n−1

s+ t

)2

,
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or equivalently,

(s− (−t))(s2n−1 − (−t)2n−1) = (s2n − 2(−st)n + t2n)− (s2n−2 − 2(−st)n−1 + t2n−2).

Expanding the left hand side of the above equation and after some algebra we obtain

(−st)(s2n−2 + t2n−2) = s2n−2 + t2n−2 + 2(−st)n−1(−st− 1),

which can be further expressed as

(−st− 1)(sn−1 − (−t)n−1)2 = (−st− 1)(s2n−2 − 2(−st)n−1 + (−t)2n−2) = 0.

Hence, either st = −1 or sn−1 = (−t)n−1. If sn−1 = (−t)n−1, then s = ∓t. By assumption,
s 6= −t so s = t. Suppose s = t, then Js,t

n = sn−(−s)n
2s

. It follows that, for even integer n
(i.e. n = 2k, k ∈ N), Js,t

2k = 0, and for odd integer n, Js,t
2k−1 = s2k−2. So

∑n
k=1 J

s,t
2k−1 =∑n

k=1(s
2)k−1 = s2n−1

s2−1 . If n is even, then s2n−1
s2−1 = 0 so s = t = 1. This implies that, for even

integer n,
∑n

k=1 J
s,t
2k−1 =

∑n
k=1 1 = n = 0 = (Js,t

n )2, a contradiction to our assumption that
n ∈ N. If n is odd, then s2n−1

s2−1 = (Js,t
n )2 = (sn−1)2 or equivalently, s2n − 1 = s2n − s2n−2. So we

have s = 1 which will lead to a contradiction. We conclude that st = −1.
Conversely, if −st = 1, then we have

(Js,t
n )2 − (Js,t

n−1)
2 =

(
sn − (−t)n

s+ t

)2

−
(
sn−1 − (−t)n−1

s+ t

)2

=
s2n − 2(−st)n + t2n − (s2n−2 − 2(−st)n−1 + t2n−2)

(s+ t)2

=
(s2n − (−st)s2n−2) + (t2n − (−st)(−t)2n−2)

(s+ t)2

=
s2n−1(s− (−t))− (−t)2n−1(s− (−t))

(s+ t)2

=
s2n−1 − (−t)2n−1

s+ t
= Js,t

2n−1.

Hence, (Js,t
n )2 − (Js,t

n−1)
2 = Js,t

2n−1. Rearranging the equation and noting that (Js,t
n−1)

2 =∑n−2
i=0 J

s,t
2i+1 yields

∑n−1
i=0 J

s,t
2i+1 =

∑n−2
i=0 J

s,t
2i+1 + Js,t

2n−1 = (Js,t
n )2. This completes the proof of the

theorem.

Theorem 2.7 (Sum of the first n even indices). Let Js,t
n denote the n-th modified Jacobsthal

number where s 6= −t are real numbers. We have, for all natural number n,

n∑
i=0

Js,t
2i = Js,t

n Js,t
n+1 ⇐⇒ −st = 1. (42)

Proof. Let Js,t
n denote the n-th modified Jacobsthal number where s 6= −t are real numbers and

n ∈ N. Note that for any nonzero number s = t, Js,t
n = sn−(−s)n

s+t
= 0 for all even integer n ≥ 0.

So
∑n−1

i=0 J
s,t
2i = 0 = Js,t

n Js,t
n+1 is trivially true (because either n or n + 1 is even). Hence, we

49



may assume (WLOG) that s 6= t. The rest follows the proof of the previous theorem. Suppose∑n
i=0 J

s,t
2i = Js,t

n Js,t
n+1 is true for nonzero real numbers s 6= ±t. Hence, we have

Js,t
n−1J

s,t
n + Js,t

2n =
n−1∑
i=0

Js,t
2i + Js,t

2n = Js,t
n Js,t

n+1,

which can be expressed as Js,t
n Js,t

n+1 − J
s,t
n−1J

s,t
n = Js,t

2n . Using (1), we obtain

Js,t
n (Js,t

n+1 − J
s,t
n−1) =

sn − (−t)n

s+ t

(
sn+1 − (−t)n+1

s+ t
− sn−1 − (−t)n−1

s+ t

)
=

s2n+1 + (−t)2n+1 − (s2n−1 + (−t)2n−1)
(s+ t)2

− (−st)n(s− t)− (−st)n−1(s− t)
(s+ t)2

=
s2n − (−t)2n

s+ t
= Js,t

2n .

Hence, by rearranging the terms, we get

(s− (−t))(s2n − (−t)2n) = s2n+1 + (−t)2n+1 − (s2n−1 + (−t)2n−1)
− (−st)n(s− t) + (−st)n−1(s− t).

After some algebraic manipulations, we obtain

(st+ 1)[(s2n−1 + (−t)2n−1)− (−st)n−1(s− t)] = 0.

It follows that, either −st = 1 or (s2n−1 + (−t)2n−1) = (−st)n−1(s− t). The latter equation
is true for all n ∈ N provided s = t but, we restrict s 6= ±t, so we conclude that −st = 1.

Conversely, suppose that −st = 1. Then, it can be verified easily (as in the proof of Theorem
(2.6)) that Js,t

n (Js,t
n+1 − J

s,t
n−1) = Js,t

2n . This proves the theorem.

Note that by using (2.1), we can easily see that, for s 6= ±t,
∑s,t

i=0 j
s,t
i J

s,t
i = Js,t

n Js,t
n+1 if and

only if −st = 1.

Theorem 2.8. Let Js,t
n and js,tn denote the n-th modified Jacobsthal number and Jacobsthal–Lucas

number where s 6= −t are real numbers. We have, for all natural number n,(
js,tn

)2
= (−st)n + (s+ t)2

4

(
Js,t
n

)2
. (43)

Proof. Let Js,t
n and js,tn denote the n-th modified Jacobsthal number and Jacobsthal–Lucas num-

ber where s 6= −t are real numbers. Note that

(Js,t
n )2 =

(
sn − (−t)n

s+ t

)2

=
s2n + (−t)2n − 2(−st)n

(s+ t)2
.

Rearranging the equation and doing some algebraic manipulations, we have

(s+ t)2(Js,t
n )2

4
+ (−st)n =

s2n + 2(−st)n + (−t)2n

4
=

(
sn + (−t)2

2

)2

.
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Using (2), we can express the above equation as follows(
js,tn

)2
= (−st)n + (s+ t)2

4

(
Js,t
n

)2
,

which is the desired result.

The following theorem can be veified easily (see equation (24) in [11]).

Theorem 2.9. Let js,tn denote the n-th modified Jacobsthal–Lucas number with −st < 0 and
defined wn = js,tn /2. So the sequence {wn}∞n=1 satisfies the recurrence relation wn+1 = (s −
t)wn + stwn−1 and is an integer sequence if s− t is even with integers s and t.

Note that w0 = js,t0 /2 = 1 and w1 = js,t1 /2 = (s − t)/2 and since wn satisfies a recurrence
relation identical to Js,t

n then wn is indeed an integer sequence whenever s − t is even. Now,
suppose that −st = 1 and s − t = 2l for some l ∈ N. Then, solving for s we obtain s =

l ±
√
l2 − 1. If l = 1, then we see that s = 1 = −(−1) = −(−t) which is forbidden. So l > 1

and this implies that (s− t)2 = 4l2 > 4 or equivalently, (s− t)2 − 4 > 0. Let n ∈ N with n > 1

and denote (a, b) as the greatest common divisor of a and b. So (Js,t
n , wn) = (Js,t

n , js,tn /2) = 1.

Theorem 2.10. Let Js,t
n denote the n-th modified Jacobsthal number with −st = 1 and s − t be

even. We have, for any natural numbers m and n,

n | m ⇐⇒ Js,t
n | Js,t

m .

Proof. Let Js,t
n denote the n-th modified Jacobsthal number with −st = 1 and s − t be even.

Suppose n|m, i.e. m = n(k − 1) for some k ∈ N. Replacing m by n(k − 1) in (5), we obtain

(Js,t
n , Js,t

nk ) = (Js,t
n , Js,t

n(k−1)
js,tn

2
+
js,tn(k−1)

2
Js,t
n )

= (Js,t
n , Js,t

n(k−1)wn + wn(k−1)J
s,t
n )

= (Js,t
n , Js,t

n(k−1))

Repeatedly applying the same argument, we get (Js,t
n , Js,t

nk ) = (Js,t
n , Js,t

n ) = Js,t
n .

Conversely, suppose that Js,t
n |Js,t

m . Then, it follows that n < m and by Euclid’s algorithm,
there exists natural numbers q ≥ 1 and 0 ≤ r < n such that m = nq + r. Again, using (5),

Js,t
n = (Js,t

n , Js,t
m ) = (Js,t

n , Js,t
nq+r) = (Js,t

n , Js,t
nqwr + wnqJ

s,t
r ).

Obviously, n divides nq and so, by our previous result, Js,t
n |Js,t

nq . It follows that,
Js,t
n = (Js,t

n , wnqJ
s,t
r ). As we have seen earlier (Js,t

nq , wnq) = 1 and by iteratively working back-
wards, we can show that this yields (Js,t

n , wnq) = 1. So Js,t
n = (Js,t

n , Js,t
r ) and this is only possible

for r = 0 since 0 ≤ r < m by assumption. Thus, m = nq which concludes that n divides m.
Here follows the conclusion.

We note that Theorem (2.10) still holds for s = −t. As we saw earlier, s = l±
√
l2 − 1 yields

s = 1 for l = 1. It was shown in [11] (see equation (52)) that Js,−s
n = nsn−1 which is easily

obtain by simply letting s → −t in (1). So for s = 1 and t = −1, we have J1,−1
n = n. Hence, if
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m and n are integers and n|m, then J1,−1
n |J1,−1

m . Obviously, the converse of this statement is also
true.

In [6], E. Lucas studied the second-order linear recurrence sequence {un}∞n=0 defined recur-
sively by un+2 = Pun+1−Qun with initial values u = 0 and u = 1.He obtained many interesting
properties including sums of reciprocals of {un}∞n=0. For instance, he showed that (see equation
(125) in [6]), for k 6= 0,

N∑
n=1

Qk2n−1

uk2n
=
Qkuk(2N−1)
ukuk2N

. (44)

In [11], Rabago showed that, via generating functions, (1) and (2) are the Binet’s formulas for
the recurrence relations

Js,t
n+1 = (s− t)Js,t

n + stJs,t
n−1, Js,t

0 = 0, Js,t
1 = 1, (45)

and
js,tn+1 = (s− t)js,tn + stjs,tn−1, js,t0 = 2, js,t1 = s− t, (46)

respectively (see equations (3) and (24) in [11]). He also obtained an analogue of d’Ocagne’s
identity [11]. More precisely, he showed in Theorem 2.16 of [11] that, for s 6= −t and natural
numbers m and n such that n < m,

Js,t
m Js,t

n+1 − Js,t
n Js,t

m+1 = (−st)nJs,t
m−n. (47)

Equation (47) is an equivalent form of

Qn−1um−n = unum−1 − umun−1 (48)

for the recurrence sequence {un}∞n=0 studied by Lucas [6]. As pointed out by Rabinowitz in [12],
equation (48) can be used to express (44) as follows

N∑
n=1

Qk2n−1

uk2n
= Q

[
uk(2N−1)
uk2N

− uk−1
uk

]
. (49)

Lucas [6] also found out that, for k 6= 0 and p 6= 0,

N∑
n=0

Qkpnuk(p−1)pn

ukpnukpn+1

=
Qkuk(pN+1−1)

ukukpN+1

. (50)

With these results, we can easily obtained the following theorem.

Theorem 2.11. Let Js,t
n denote the n-th modified Jacobsthal number where s and t are real

numbers such that s 6= ±t. We have, for all N ∈ N,

N∑
n=1

(−st)k2n−1

Js,t
k2n

=
(−st)kJs,t

k(2N−1)

Js,t
k Js,t

k2N

= (−st)

[
Js,t
k(2N−1)

Js,t
k2N

−
Js,t
k−1

Js,t
k

]
. (51)
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Popov [9] showed that, for all integers r,

lim
N→∞

uN−r
uN

=

{
αr, if |β/α| < 1,

βr, if |β/α| > 1.
, (52)

where α and β are the roots of the quadratic equation x2 − Px + Q = 0. Using these limits,
together with Theorem (2.11), we get the following theorem.

Theorem 2.12. Let Js,t
n denote the n-th modified Jacobsthal number where s and t are real

numbers such that s 6= ±t. We have

∞∑
n=1

(−st)k2n−1

Js,t
k2n

=


(−t)r

Js,t
k

, if |β/α| < 1,

sr

Js,t
k

, if |β/α| > 1.

(53)
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