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1 Introduction 

Nearly a century ago, the classic Nine Dots Problem appeared in Samuel Loyd’s Cyclopedia of 
Puzzles [1–4]. The challenge was as follows: “…draw a continuous line through the center of 
all the eggs so as to mark them off in the fewest number of strokes” [3–5]. 

That puzzle can naturally be extended to an arbitrarily large number of distinct (zero-dimen-
sional) points for each row / column [7]. This new problem asks to connect n × n points, arranged 
in a grid formed by n rows and n columns, using the fewest straight lines connected at their end 
points. Ripà and Remirez [6] showed that it is possible to do this for every n ∈ ℕ – {0, 1, 2}, 
using only 2·n – 2 straight lines. For any n ≥ 5, we can combine a given 8 line solution for the 
5 × 5 problem and the square spiral frame [10]. In the same paper, they extended the n × n result 
to a three dimensional space [8] and finally to a generic k-dimensional space (for k > 3). 

Starting from that outcome, we consider the same problem and rules by [6]. We can apply 
the “pure” spiral method to a n1 × n2 rectangular grid (where n1 ≤ n2). In this way, it is quite 
simple to discover that the minimum number of lines we need to connect every point (solving 
the problem inside the box, connecting points without crossing a line, and visiting any dot just 
once) is given by the Eq. 1 [9]. 
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  ℎ = 2 ∙ ݊ − 1			∀	݊ ∈ ℕ − {0, 1}           (1) 

 

Figure 1. The original problem from Samuel Loyd’s Cyclopedia of Puzzles, 
New York, 1914, p. 301. 

2   The n1 × n2 × … × nk Problem upper bound 

If we try to extend the result in Eq. 1 to a three dimensional space, where n1 ≤ n2 ≤ n3, we need 
to modify a somewhat the standard strategy described in [6] in order to choose the best “plane 
by plane” approach that we can effect, even if there are a few exceptions (such as if n3 – n2 ≤ 1, 
see Appendix). So, we need to identify the correct starting plane to lay the first straight line. 
Using basic mathematics, it is quite easy to prove that, in general, the best option is to start 
from the [n2; n3] plane. 

Hence, under the additional constraints that we must solve the problem inside the box only, 
connecting points without crossing a line, and visiting each dot just once, our strategy is as 
follows: 

 
• Step 1) Take one of the external planes identified by [n2; n3]: here is the plane to lay 

our first line; 
• Step 2) Starting from one point on an angle of this grid, draw the first straight line to 

connect n3 points, until we have reached the last point in that row; 
• Step 3) The next line is on the same plane as well. It lays on [n2; n3], it is orthogonal 

to the previous one, and it links n2 − 1 points; 
• Step 4) Repeat the square (rectangular) spiral pattern until we connect every point 

belonging to this n2 · n3 set to the others on the same surface; 
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• Step 5) Draw another line which is orthogonal to the [n2; n3] plane we have 
considered before, doubling the same scheme (in reverse) with the opposite face of 
this three dimensional box with the shape of a (n1 , n2 , n3) parallelogram. Repeat the 
same pattern for any n2 × n3 grid, n1 – 2 times more. 

The rectangular spiral solution also gives us the shortest path we can find to connect every 
point: the total length of the line segments used to fit all the points is minimal. 

 
Nota Bene: Just a couple of trivial considerations. Referring to the rectangular spiral pattern 
applied to a k-dimensional space (k ≥ 2), we can return to the starting point using exactly one 
additional line (it works for any number of dimensions we can consider at or above 1). For any 

odd value of n1, we can visit a maximum of 1 1
2
kn −⎡ ⎤ −⎢ ⎥⎢ ⎥

 points twice, simply extending the line 

end (if we do not, we will not visit any dot more than once, otherwise we can visit 1 1
2
kn −⎡ ⎤ −⎢ ⎥⎢ ⎥

 

points, at most). Moreover, it is possible to visit up to nk–1 – 2 points twice if we move the 
second to last line too (crossing some more lines as well). Finally, considering k ≥ 2, if we 
are free to extend the ending line until we are close to the next (already visited) point (i.e., let ε 
be the distance between the last line and the nearest point and let the distance between two 
adjacent points be unitary, we have that 0 < ε < 1), it is possible to return to the starting point 
without visiting any point more than once. 
 

The total number of lines we use to connect every point is always lower or equal to 

 h = 2 · n1 · n2 − 1  (2) 

In fact, h = (2 · n2 − 1) · n1 + n1 − 1. 
Nevertheless, (2 · n2 − 1) · n1 + n1 – 1 = 2 · n1 · n2 – n1 + n1 – 1 = 2 · n1 · n2 – 1 = 2 · n1 · n2 – n2 

+ n2 – 1 = (2 · n1 − 1) · n2 + n2 − 1  (Q.E.D.) 
 
The “savings”, in terms of unused segments, are zero if (and only if) 

 n1 < 2 · (n3 − n2) + 3                 (3) 

In general, (also if n1 ≥ 2 · (n3 − n2) + 3), the Eq. 2 can be rewritten as: 

 h = 2 · n1 · n2 − c                 (4) 

Where c = 1 if the “savings” are zero, while c ≥ 2 if not. 
As an example, let us consider the following cases: 

a) n1 = 5;  n2 = 6;  n3 = 9. 
b) n1 = 11;  n2 = 12;  n3 = 13. 

While in the first hypothesis c = 1 (in fact 5 < 2 · (9 − 3) + 3), h = 2 · 5 · 6 − 1 = 59, in case 
b) we have c = 13, h = 2 · 11 · 12 − 13 = 251. This is by virtue of the fact that the fifth and the 
sixth connecting lines allow us to “save” one line for every subsequent plane, whereas each 
plane “met” after the sixth can be solved using two fewer lines (if compared with the first four 
we have considered).  
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Figure 2. The rectangular spiral for the case of the example b): n1 = 11, n2 = 12, n3 = 13. 

 
If n1 ≥ 2 · (n3 – n2) + 4, the (pure) rectangular spiral method, with specific regard to the three 

dimensional problem, can be summarized as follows: 

h = n1 – 1 + [2 · (n3 – n2) + 2] · (2 · n2 – 1) + 2 · (2 · n2 – 2) + [2 · (n3 – n2) + 4] · (2 · n2 – 3) 
+ 4 · (2 · n2 – 4) + [2 · (n3 – n2) + 6] · (2 · n2 – 5) + 6 · (2 · n2 – 6) + … + d, 

where d represents the product of the number of line segments used to solve the plane, which 
contains the fewest lines (the last plane we have considered, the plane which cuts roughly half-
way through our imaginary box) and n1 – {[2 · (n3 – n2) + 2]} + 2 + [2 · (n3 – n2) + 4] + 4 + …}”. 

Thus, we can synthesize the previous formula as  

ℎ = ݊ଵ − 1 + ෍[(2 ∙ ݊ଶ − 2 ∙ ݆ − 1) ∙ (2 ∙ (݊ଷ − ݊ଶ௝೘ೌೣ
௝ୀ଴ ) + 2 ∙ (݆ + 1))	

 +	2 ∙ (݆ + 1) ∙ (2 ∙ ݊ଶ − 2 ∙ (݆ + 1))] + ܾ 

Hence ℎ = −8 ∙ ݆௠௔௫ଷ3 + 6 ∙ ݆௠௔௫ଶ ∙ ݊ଶ − 2 ∙ ݆௠௔௫ଶ ∙ ݊ଷ − 11 ∙ ݆௠௔௫ଶ − 4 ∙ ݆௠௔௫ ∙ ݊ଶଶ +4 ∙ ݆௠௔௫ ∙ ݊ଶ ∙ ݊ଷ + 16 ∙ ݆௠௔௫ ∙ 	݊ଶ − 4 ∙ ݆௠௔௫ ∙ ݊ଷ − 43 ∙ ݆௠௔௫3 − 4 ∙ ݊ଶଶ +4 ∙ ݊ଶ ∙ ݊ଷ + 10 ∙ ݊ଶ − 2 ∙ ݊ଷ − 7	+	݊ଵ + ܾ, 

where ݆௠௔௫ represents the maximum value of the upper bound of the summation, let us say	ଔ̃, 
such that  
 ݊ଵ ≥ ∑ 	[2 ∙ (݊ଷ − ݊ଶ) + 2 ∙ (݆ + 1) + 2 ∙ (݆ + 1)]ఫ̃௝ୀ଴ → ݊ଵ ≥ 2 ∙ (ଔ̃ + 1) ∙ (݊ଷ − ݊ଶ + ଔ̃ + 2),  
while 

b:=

ەۖۖ
۔ۖ
ۓۖ [݊ଵ − 	2 ∙ (݆௠௔௫ + 1) ∙ (݊ଷ − ݊ଶ + ݆௠௔௫ + 2)] ∙ (2 ∙ ݊ଶ − 2 ∙ ݆௠௔௫ − ଵ݊									ࢌ࢏(3 − 	2 ∙ (݆௠௔௫ + 1) ∙ (݊ଷ − ݊ଶ + ݆௠௔௫ + 2) ≤ 	2 ∙ (݊ଷ − ݊ଶ) + 2 ∙ (݆௠௔௫ + 2	)

[2 ∙ (݊ଷ − ݊ଶ) + 2 ∙ (݆௠௔௫ + 2	)] ∙ (2 ∙ ݊ଶ − 2 ∙ ݆௠௔௫ − 3) +{݊ଵ − 2 ∙ (݆௠௔௫ + 1) ∙ (݊ଷ − ݊ଶ + ݆௠௔௫ + 2) − [2 ∙ (݊ଷ − ݊ଶ) + 2 ∙ (݆௠௔௫ + 2)]} ∙ (2 ∙ ݊ଶ − 2 ∙ ݆௠௔௫ − ଵ݊									ࢌ࢏(4 − 	2 ∙ (݆௠௔௫ + 1) ∙ (݊ଷ − ݊ଶ + ݆௠௔௫ + 2) > 	2 ∙ (݊ଷ − ݊ଶ) + 2 ∙ (݆௠௔௫ + 2)	
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Making some calculations, we have that 

 

b:= 

ەۖۖ
۔ۖۖ
ۓۖۖ 4 ∙ ݆௠௔௫ଷ − 8 ∙ ݆௠௔௫ଶ ∙ ݊ଶ + 4 ∙ ݆௠௔௫ଶ ∙ ݊ଷ + 18 ∙ ݆௠௔௫ଶ − 2 ∙ ݆௠௔௫ ∙ ݊ଵ + 4 ∙ ݆௠௔௫ ∙ ݊ଶଶ − 4 ∙ ݆௠௔௫ ∙ ݊ଶ ∙ ݊ଷ −22 ∙ ݆௠௔௫ ∙ ݊ଶ + 10 ∙ ݆௠௔௫ ∙ ݊ଷ + 26 ∙ ݆௠௔௫ + 2 ∙ ݊ଵ ∙ ݊ଶ − 3 ∙ ݊ଵ + 4 ∙ ݊ଶଶ − 4 ∙ ݊ଶ ∙ ݊ଷ − 14 ∙ ݊ଶ + 6 ∙ ݊ଷ + ଵ݊									ࢌ࢏12 ≤ 2 ∙ (݆௠௔௫ + 2) ∙ (݆௠௔௫ − ݊ଶ + ݊ଷ + 2)

4 ∙ ݆௠௔௫ଷ − 8 ∙ ݆௠௔௫ଶ ∙ ݊ଶ + 4 ∙ ݆௠௔௫ଶ ∙ ݊ଷ + 20 ∙ ݆௠௔௫ଶ − 2 ∙ ݆௠௔௫ ∙ ݊ଵ + 4 ∙ ݆௠௔௫ ∙ ݊ଶଶ − 4 ∙ ݆௠௔௫ ∙ ݊ଶ ∙ ݊ଷ −24 ∙ ݆௠௔௫ ∙ ݊ଶ + 12 ∙ ݆௠௔௫ ∙ ݊ଷ + 34 ∙ ݆௠௔௫ + 2 ∙ ݊ଵ ∙ ݊ଶ − 4 ∙ ݊ଵ + 4 ∙ ݊ଶଶ − 4 ∙ ݊ଶ ∙ ݊ଷ − 18 ∙ ݊ଶ + 10 ∙ ݊ଷ + ଵ݊									ࢌ࢏20 > 2 ∙ (݆௠௔௫ + 2) ∙ (݆௠௔௫ − ݊ଶ + ݊ଷ + 2)	
 

 
Thus, the general solution is given by: 

ℎ =
ەۖۖ
۔ۖۖۖ
ۖۖۖ
ସ∙௝೘ೌೣయଷۓ − 2 ∙ ݆௠௔௫ଶ ∙ ݊ଶ + 2 ∙ ݆௠௔௫ଶ ∙ ݊ଷ + 7 ∙ ݆௠௔௫ଶ − 2 ∙ ݆௠௔௫ ∙ 	݊ଵ − 6 ∙ ݆௠௔௫ ∙ 	݊ଶ +6 ∙ ݆௠௔௫ ∙ 	݊ଷ + ଷହ∙௝೘ೌೣଷ + 2 ∙ ݊ଵ ∙ ݊ଶ − 2 ∙ ݊ଵ − 4 ∙ ݊ଶ + 4 ∙ ݊ଷ + ଵ݊									ࢌ࢏5 ≤ 2 ∙ (݆௠௔௫ଶ − ݆௠௔௫ ∙ 	݊ଶ + ݆௠௔௫ ∙ ݊ଷ + 4 ∙ ݆௠௔௫ − 2 ∙ ݊ଶ + 2 ∙ ݊ଷ + 4)
ସ∙௝೘ೌೣయଷ − 2 ∙ ݆௠௔௫ଶ ∙ ݊ଶ + 2 ∙ ݆௠௔௫ଶ ∙ ݊ଷ + 9 ∙ ݆௠௔௫ଶ − 2 ∙ ݆௠௔௫ ∙ 	݊ଵ − 8 ∙ ݆௠௔௫ ∙ 	݊ଶ +8 ∙ ݆௠௔௫ ∙ 	݊ଷ + ହଽ∙௝೘ೌೣଷ + 2 ∙ ݊ଵ ∙ ݊ଶ − 3 ∙ ݊ଵ − 8 ∙ ݊ଶ + 8 ∙ ݊ଷ + ଵ݊									ࢌ࢏13 > 2 ∙ (݆௠௔௫ଶ − ݆௠௔௫ ∙ 	݊ଶ + ݆௠௔௫ ∙ ݊ଷ + 4 ∙ ݆௠௔௫ − 2 ∙ ݊ଶ + 2 ∙ ݊ଷ + 4)

        (5) 

where ݆௠௔௫	is the maximum value j	∈	ℕ0 such that ݊ଵ ≥ 2 ∙ [݆ଶ + (݊ଷ − ݊ଶ + 3) ∙ ݆ + ݊ଷ − ݊ଶ + 2] 
→	݆௠௔௫ = ቔଵଶ ∙ ൫ඥ݊ଷଶ + ݊ଶଶ − 2 ∙ ݊ଶ ∙ ݊ଷ + 2 ∙ ݊ଷ − 2 ∙ ݊ଶ + 2 ∙ ݊ଵ + 1 + ݊ଶ − ݊ଷ − 3൯ቕ. 

 
 
The Eq. 5 can be rewritten more elegantly as 
 

h=

ەۖۖ
۔ۖ
ۓۖ ସଷ ∙ ݆௠௔௫ଷ + [2 ∙ (݊ଷ − ݊ଶ) + 7] ∙ ݆௠௔௫ଶ + ቂ6	 ∙ (݊ଷ − ݊ଶ) − 2	 ∙ ݊ଵ + ଷହଷ ቃ ∙ ݆௠௔௫ + 4 ∙ (݊ଷ − ݊ଶ) + 2 ∙ ݊ଵ ∙ (݊ଶ − 1) + 5݂݅									݊ଵ ≤ 2 ∙ ൣ݆௠௔௫ଶ +	(݊ଷ − ݊ଶ + 4) ∙ ݆௠௔௫ + 2 ∙ (݊ଷ − ݊ଶ) + 4൧
ସଷ ∙ ݆௠௔௫ଷ + [2 ∙ (݊ଷ − ݊ଶ) + 9] ∙ ݆௠௔௫ଶ + ቂ8 ∙ (݊ଷ − ݊ଶ) − 2 ∙ 	݊ଵ + ହଽଷ ቃ ∙ ݆௠௔௫ + 8 ∙ (݊ଷ − ݊ଶ) + ݊ଵ ∙ (2 ∙ ݊ଶ − 3) + 13݂݅									݊ଵ > 2 ∙ ൣ݆௠௔௫ଶ +	(݊ଷ − ݊ଶ + 4) ∙ ݆௠௔௫ + 2 ∙ (݊ଷ − ݊ଶ) + 4൧

(6) 

where 	݆௠௔௫ = ቔଵଶ ∙ ൫ඥ݊ଷଶ + ݊ଶଶ − 2 ∙ ݊ଶ ∙ ݊ଷ + 2 ∙ (݊ଷ − ݊ଶ + ݊ଵ) + 1 + ݊ଶ − ݊ଷ − 3൯ቕ. 
 

Nota Bene. For obvious reasons, the Eq. 6 is always applicable, on condition that 
n1 ≥ 2 · (n3 – n2) + 4. Otherwise, the solution follows immediately from Eq. 4, since c can 
assume only two distinct values: 1 or 2 (c = 1 if the condition (3) is verified, c = 2 if the (3) is 
not satisfied, but the Eq. 6 cannot be used – therefore, this is the case n1 = 2 · (n3 – n2) + 3. 



64 
 

  

Figure 3. The rectangular spiral and its development [2] 
for the cases of (from left to right) n3 – n2 = 0, n3 – n2 = 1 and n3 – n2 = 2. 

Therefore, it is possible to extend the aforementioned result we have previously shown in 
the k-dimensional case: n1 × n2 × … × nk. The method to determine an acceptable upper limit 
for the optimal solution remains the same as in the case n1 = n2 = … = nk: ℎ = ݐ) + 1) ∙ 	∏ ௝݊௞ିଷ௝ୀଵ − 1 (7) 

Where t, the lowest upper limit available for the nk–2 × nk–1 × nk problem, is given by Eq. 4 
(with the exception of the very particular cases we introduced at the beginning of the paper [6]) 
and it is made explicit by (2)–(6). 

Specifically, we will start considering an external grid defined by [nk–1; nk], and we will 
connect the corresponding nk · nk–1 points using 2 · nk–1 – 1 lines (following the rectangular 
spiral pattern), then, from the ending point of that external grid, we will draw the line segment 
which is orthogonal to any [nk–1; nk] plane (along the nk–2 points direction), and so on. 

3   The n1 × n2 × … × nk Problem bounded from below 

In this section, we provide a non-trivial lower bound for the k-dimensional n1 × n2 × … × nk 
Points Problem. In this way, we can build a range in which all the best possible solutions to the 
problem we are considering (for any natural number ni and number of dimensions k) will 
certainly fall. In conclusion, we provide a few characteristic numerical examples in order to 
appreciate the quality of the result arising from the particular approach we have chosen. 

For k = 3 (n1 ≤ n2 ≤ n3), let us examine first the structure of the grid: it is not possible to 
intersect more than (n3 − 1) + (n2 – 1) = n3 + n2 − 2 points using two consecutive lines; 
however, there is one exception (which, for simplicity, we may assume as in the case of the 
first two lines drawn). In this circumstance, it is possible to fit n3 points with the first line and 
n2 − 1 points using the second one, just as in the case of the pure rectangular spiral solution that 
we have already considered. 

Let us observe now that, lying (by definition) each segment on a unique plan, it will be 
necessary to provide n1 − 1 lines to connect the various plans that are addressed in succession 
(of any type): there is no way to avoid using fewer than n1 − 1 lines to connect (at most) n1 − 1 
points at a time (under the constraint previously explained above to connect n3 + n2 − 1 points 
with the first two line segments). Each of these lines could be interposed between as many 
rectilinear line segments capable of connecting nk − 1 points at any one time. 

Following the same pattern, we notice that the previous result, in the k-dimensions case 
(k ≥ 3), does not substantially change. 
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Let hl be the number of line segments of our lower bound, for any k ≥ 3, so that we have 
 

 ∏ ݊௜௞௜ୀଵ :≤ ݊௞ + ∑ (݊௝ − 1)ଶ௞ିଶ௝ୀଵ + (݊௞ − 1) ∙ ∑ (݊௝ − 1)௞ିଶ௝ୀଵ + ൣℎ௟ − 2 ∙ ∑ (݊௝ − 1) − 1௞ିଶ௝ୀଵ ൧ ∙ ቔ௡ೖା௡ೖషభଶ − 1ቕ (8) 

Taking into account the fact that,	 ∀	݊௞,	݊௞ିଵ	, ቔ௡ೖା௡ೖషభଶ − 1ቕ ≤ ቔ௡ೖା௡ೖషభିଵଶ ቕ, doing some 
basic calculations, we get the following result: 

 

ەۖۖ
۔ۖۖۖ
ۖۖۖ
ℎ௟ۓ ≥ ቦ 2݊௞ + ݊௞ିଵ − 2 ∙ ቎ෑ݊௜௞

௜ୀଵ −෍ ௝݊ଶ + (3 − ݊௞) ∙ ෍ ௝݊ + ݊௞ ∙ (݇ − 3) − 2 ∙ ݇ + 4 + (݊௞ + ݊௞ିଵ − 2) ∙ ෍(݊௝ − 1)௞ିଶ
௝ୀଵ

௞ିଶ
௝ୀଵ

௞ିଶ
௝ୀଵ ቏	ቧ + 1

				ࢌ࢏ ݊௞ + ݊௞ିଵ2 ∈ ℕ\{0,1}
ℎ௟ ≥ ቦ 2݊௞ + ݊௞ିଵ − 1 ∙ ቎ෑ݊௜௞

௜ୀଵ −෍ ௝݊ଶ + (3 − ݊௞) ∙ ෍ ௝݊ + ݊௞ ∙ (݇ − 3) − 2 ∙ ݇ + 4 + (݊௞ + ݊௞ିଵ − 1) ∙ ෍(݊௝ − 1)௞ିଶ
௝ୀଵ

௞ିଶ
௝ୀଵ

௞ିଶ
௝ୀଵ ቏	ቧ + 1

				ࢌ࢏ ݊௞ + ݊௞ିଵ + 12 ∈ ℕ\{0,1}
 

 

Hence 

  

ℎ௟ ≥
ەۖۖ
۔ۖۖۖ
ۖۖۖ
ቦۓ 2݊௞ + ݊௞ିଵ − 2 ∙ ቎ෑ݊௜௞

௜ୀଵ −෍ ௝݊ଶ +෍ ௝݊ −௞ିଶ
௝ୀଵ ݊௞௞ିଶ

௝ୀଵ + ݊௞ିଵ ∙ ቌ෍ ௝݊ − ݇௞ିଶ
௝ୀଵ + 2ቍ቏	ቧ + 1																						

				ࢌ࢏ ݊௞ + ݊௞ିଵ2 ∈ ℕ\{0,1}
ቦ 2݊௞ + ݊௞ିଵ − 1 ∙ ቎ෑ݊௜௞

௜ୀଵ −෍ ௝݊ଶ + 2 ∙෍ ௝݊ −௞ିଶ
௝ୀଵ ݊௞௞ିଶ

௝ୀଵ + ݊௞ିଵ ∙ ቌ෍ ௝݊ − ݇௞ିଶ
௝ୀଵ + 2ቍ − ݇ + 2	቏	ቧ + 1

				ࢌ࢏ ݊௞ + ݊௞ିଵ + 12 ∈ ℕ\{0,1}
 

(9) 

Notice now how we can improve the result by the (9) whereas the linking lines between the 
various plans cannot actually join ni − 1 points each time: to connect all the points of every 
plane belonging to the dimension/s distinguished by the fewest points aligned (the values of the 
ni characterized by the lowest subscript) it is possible to connect ni − 1 points with the first line 
segment, ni − 2 using the second line segment, ni − 3 points with the next one, and so on. 

Therefore, with reference to the three-dimensional case, these n1 − 1 linking lines intersect 	∑ (݊ଵ௡భିଵ௝ୀଵ − ݆) = ௡భ∙(௡భିଵ)ଶ  new (unvisited) points. As noted above, we can assume that, at 
most, each one of them will precede and follow as many line segments that intersect nk − 1 
points. 

Thus ෑ݊௜௞
௜ୀଵ : ≤ ݊௞ + 12 ∙෍ ௝݊ ∙ (݊௝ − 1)௞ିଶ

௝ୀଵ + (݊௞ − 1) ∙෍(݊௝ − 1)௞ିଶ
௝ୀଵ + ቎ℎ௟ − 2 ∙෍(݊௝ − 1) − 1௞ିଶ

௝ୀଵ ቏ ∙ ඌ݊௞ + ݊௞ିଵ2 − 1ඐ 
 (10) 

Hence 
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ℎ௟ ≥
ەۖۖ
۔ۖۖۖ
ۖۖۖ
ቦۓ 2݊௞ + ݊௞ିଵ − 2 ∙ ቎ෑ݊௜௞

௜ୀଵ − 12 ∙෍ ௝݊ଶ − 12 ∙෍ ௝݊௞ିଶ
௝ୀଵ − ݊௞௞ିଶ

௝ୀଵ + ݊௞ିଵ ∙ ቌ෍ ௝݊ − ݇௞ିଶ
௝ୀଵ + 2ቍ + ݇ − 2቏	ቧ + 1

				ࢌ࢏ ݊௞ + ݊௞ିଵ2 ∈ ℕ\{0,1}
ቦ 2݊௞ + ݊௞ିଵ − 1 ∙ ቎ෑ݊௜௞

௜ୀଵ − 12 ∙෍ ௝݊ଶ + 12 ∙෍ ௝݊ −௞ିଶ
௝ୀଵ ݊௞௞ିଶ

௝ୀଵ + ݊௞ିଵ ∙ ቌ෍ ௝݊ − ݇௞ିଶ
௝ୀଵ + 2ቍ቏	ቧ + 1																

				ࢌ࢏ ݊௞ + ݊௞ିଵ + 12 ∈ ℕ\{0,1}
(11) 

 

In detail (looking at the (11)), if k = 3, it follows that 

ℎ௟ ≥
ەۖۖ
۔ۖ
ۓۖ ቒଶ∙௡భ∙௡మ∙௡యି௡భమାଶ∙௡భ∙௡మି௡భିଶ∙௡మିଶ∙௡యାଶ௡యା௡మିଶ ቓ + 				ࢌ࢏1 ௡యା௡మଶ ∈ ℕ\{0,1}
ቒଶ∙௡భ∙௡మ∙௡యି௡భమାଶ∙௡భ∙௡మା௡భିଶ∙௡మିଶ∙௡య௡యା௡మିଵ ቓ + 				ࢌ࢏							1 ௡యା௡మାଵଶ ∈ ℕ\{0,1}

																													(12)  
 

Now, let us consider that, for every ݊௞ ≥ ݊௞ିଵ ≥. . . ≥ ݊ଶ ≥ ݊ଵ ≥ 2 (∀	݊௜ ∈ ℕ\{0,1}), ଶ௡ೖା௡ೖషభିଶ ∙ ቂ∏ ݊௜௞௜ୀଵ − ଵଶ ∙ ∑ ௝݊ଶ − ଵଶ ∙ ∑ ௝݊௞ିଶ௝ୀଵ − ݊௞௞ିଶ௝ୀଵ + ݊௞ିଵ ∙ ൫∑ ௝݊ − ݇௞ିଶ௝ୀଵ + 2൯ + ݇ − 2ቃ ≥ଶ௡ೖା௡ೖషభିଵ ∙ ቂ∏ ݊௜௞௜ୀଵ − ଵଶ ∙ ∑ ௝݊ଶ + ଵଶ ∙ ∑ ௝݊ −௞ିଶ௝ୀଵ ݊௞௞ିଶ௝ୀଵ + ݊௞ିଵ ∙ ൫∑ ௝݊ − ݇௞ିଶ௝ୀଵ + 2൯ቃ. 
Thus, considering the fact that we can arbitrarily change the value of ݊௞ (i.e., we can take ݊௞෦ ≔ ݊௞ + 1	if we like) without varying the number of line segments we need to connect 

every point, we can assume, without loss of generality, that  ℎ௟ ≥ ቒ ଶ௡ೖା௡ೖషభିଶ ∙ ቂ∏ ݊௜௞௜ୀଵ − ଵଶ ∙ ∑ ௝݊ଶ − ଵଶ ∙ ∑ ௝݊௞ିଶ௝ୀଵ௞ିଶ௝ୀଵ + ݊௞ିଵ ∙ ൫∑ ௝݊ − ݇௞ିଶ௝ୀଵ + 3൯ + ݇ − 4ቃ	ቓ − 1   (13) 
for any [݊௞, ݊௞ିଵ,..., ݊ଶ, ݊ଵ].  

Consequently, if k = 3, 

 ℎ௟ ≥ ቒ௡భ∙(ଶ∙௡మ∙௡యି௡భାଶ∙௡మିଵ)ିଶ௡యା௡మିଶ ቓ − 1    (14) 
On specifics, for 2 ≤ ݊ଵ = ݊ଶ = ݊ଷ ≔ ݊, 

 ℎ௟ ≥ ቒ݊ଶ + ଷ∙௡ଶ ቓ     (15) 
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4 Conclusion 

Given k = 3, by combining Eq. 14 with the (2)‒(6), we get the intervals in which the best 
possible solutions of the problem will certainly fall. 

How wide this range is (and therefore how interesting this outcome may be considered) also 
depends on the particular values of	݊ଵ, ݊ଶ and ݊ଷ. 

Example 1: n1 = 10, n2 = 13, n3 = 15. 
155 ≤ h ≤ 253 

 

Example 2: n1 = 10, n2 = 21, n3 = 174.  
 

380 ≤ h ≤ 419 
 

If k > 3, the interval is given by 
 ቦ 2݊௞ + ݊௞ିଵ − 2 ∙ ቎ෑ݊௜௞

௜ୀଵ − 12 ∙ ቌ෍ ௝݊ଶ +෍ ௝݊௞ିଶ
௝ୀଵ

௞ିଶ
௝ୀଵ ቍ + ݊௞ିଵ ∙ ቌ෍ ௝݊ − ݇௞ିଶ

௝ୀଵ + 3ቍ + ݇ − 4቏	ቧ − 1 ≤ ℎ ≤ ݐ) + 1) ∙ෑ ௝݊௞ିଷ
௝ୀଵ − 1 

 

Where t, the minimal upper limit for the nk‒2 × nk‒1 × nk Points Problem, is the result obtained 
from the (4)‒(6) or, if nk‒1 ≤ nk − 1, from the (16)‒(17) (see Appendix). 

In this case, how great the interval is also depends on the particular value of k (in general, 
the lager the k, the wider is the interval). 

Example 3: k = 4, n1 = 10, n2 = 16, n3 = 18, n4 = 48 (thus t = 575).  

4328 ≤ h ≤ 5759 

If I had to gamble, setting k := 3, I would put money on any betting odds higher than 
1+10−80 : 1 (there are roughly 1080 atoms in the visible universe) that “hbest” (the number of 
straight line segments associated with the best possible solution) is significantly closer to the 
upper bound I defined and can be small compared to its counterpart – mathematically, I would 
be willing to bet on the fact that, for the vast majority of the possible combinations [D, n3], ௛ೠି௛್೐ೞ೟௛್೐ೞ೟ି௛೗ < 1. 

Finally, it is interesting to note that, for some particular combinations, the upper bound and 
the lower bound coincide, thus allowing us to obtain a complete and definitive resolution of the 
given problem. 

E.g., for k = 3, n1 = n2 = 3, n3 = 61, it follows that hl = hu = hbest = 17. Ditto if k = 3, n1 = 3, 
n2 = 4, n3 = 57. In fact, hl = hu = hbest = 23. While, if k = 4, n1 = n2 = n3 = 2, n4 = 46, hl = hu = 
hbest = 15.  

5   Appendix 

If we do not take into account all the additional constraints (solving the problem “inside the 
box” only, no intersections between lines, and so on) we could improve our “plane by plane” 
upper bound. For example, we could use the basic pattern below (Fig. 4), for any n ≥ 4. This 
kind of solutions can be applied to the n × n × … × n Points Problem and to the n1 × n2 × … × nk 
Points Problem as well (e.g., nk − nk–1 = 1, see Fig. 5): 
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Figure 4. The “double spiral” pattern for nk = nk–1 (2·nk–1 – 2 lines). 

 

 
 

Figure 5. The “double spiral” pattern if nk – nk–1 = 1 (2· nk–1 – 1 lines). 

Looking at the pattern of Fig. 5, we can easily discover that we can use it to reduce the 3D 
upper bounds by the rectangular spiral: e.g., for n1 = n2 = 22, n3 = 23 it follows that hu = 902, 
which is far better than 917, the rectangular spiral one. 

Therefore, if n1 = n2 = n3 := n, the best “thinking outside the box” upper bounds are as follows. 
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Table 1: n × n × n Points Puzzle upper bounds 
following the “double spiral pattern” by Fig. 4. 

n 
Best Upper Bound 

Currently Discovered  n 
Best Upper Bound 

Currently Discovered n 
Best Upper Bound 

Currently Discovered
1 / 18 587 35 2258 

2 7 19 655 36 2391 

3 14 20 726 37 2528 

4 26 21 801 38 2669 

5 42 22 880 39 2814 

6 62 23 963 40 2963 

7 85 24 1050 41 3115 

8 112 25 1141 42 3270 

9 143 26 1236 43 3429 

10 178 27 1335 44 3592 

11 216 28 1438 45 3759 

12 257 29 1544 46 3930 

13 302 30 1653 47 4105 

14 351 31 1766 48 4284 

15 404 32 1883 49 4467 

16 461 33 2004 50 4654 

17 522 34 2129 51 4845 
 

 
Nota Bene. The upper bounds for n = 4 and n = 5 are only two particular cases. They are based 
on a combination of a few, different, two-dimensional patterns. A personal conjecture is that it 
is possible to do the same for any n ≥ 4; i.e., we would be able to solve every n × n × n (n ≥ 4) 
puzzle with a plane by plane approach using at least one line less than the “pure” double spiral 
solution. 

Thus, ∀	݊ ≥ 4,  

hu (n1=n2=n3:=n) =	
ەۖۖ
۔ۖۖ
	ۓۖۖ
9 ∙ (݊ − 1) + ∑ (2 ∙ ݊ − 2 ∙ ݅ − 1) + ∑ (2 ∙ ݅ + 3)(2 ∙ ݊ − 2 ∙ ݅ − 2) +௜೘ೌೣ௜ୀଵ௜೘ೌೣ௜ୀଵ(݊ − ݅௠௔௫ଶ − 5 ∙ ݅௠௔௫ − 4) ∙ (2 ∙ ݊ − 2 ∙ ݅௠௔௫ − ݊					ࢌ࢏(3 − ݅௠௔௫ଶ − 5 ∙ ݅௠௔௫ ≤ 5
9 ∙ (݊ − 1) + ∑ (2 ∙ ݊ − 2 ∙ ݅ − 1) + ∑ (2 ∙ ݅ + 3)(2 ∙ ݊ − 2 ∙ ݅ − 2) +௜೘ೌೣ௜ୀଵ௜೘ೌೣ௜ୀଵ(2 ∙ ݊ − 2 ∙ ݅௠௔௫ − 3) + (݊ − ݅௠௔௫ଶ − 5 ∙ ݅௠௔௫ − 5) ∙ (2 ∙ ݊ − 2 ∙ ݅௠௔௫ − ݊					ࢌ࢏(4 − ݅௠௔௫ଶ − 5 ∙ ݅௠௔௫ > 5

 

Hence 
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hu (n1=n2=n3:=n) =	
ەۖۖ
۔ۖ
ۓۖ
	
ଶଷ ∙ ݅௠௔௫ଷ + 5 ∙ ݅௠௔௫ଶ − 2 ∙ ቀ݊ − ଵସଷ ቁ ∙ ݅௠௔௫ + 2 ∙ ݊ଶ − 2 ∙ ݊ + ݊					ࢌ࢏3 − ݅௠௔௫ଶ − 5 ∙ ݅௠௔௫ ≤ 5
ଶଷ ∙ ݅௠௔௫ଷ + 6 ∙ ݅௠௔௫ଶ − ቀ2 ∙ ݊ − ସଷଷ ቁ ∙ ݅௠௔௫ + 2 ∙ ݊ଶ − 3 ∙ ݊ + ݊					ࢌ࢏8 − ݅௠௔௫ଶ − 5 ∙ ݅௠௔௫ > 5

  (16) 
 

where ݅௠௔௫	is the maximum value i	∈	ℕ0	such that ݊ ≥ ݅ଶ + 5 ∙ ݅ + 4  
→	݅௠௔௫ = ቔଵଶ ∙ ൫√4 ∙ ݊ + 9 − 5൯ቕ. 
While, if ݊ଵ = ݊ଶ = ݊ଷ − 1, the best “thinking outside the box” upper bounds are given by 
Table 2. 

Table 2: n1 × n2 × n3 Points Puzzle upper bounds for n1 = n2 = n3 – 1 
following the “double spiral pattern” by Fig. 5. 

n1 = n2 

= n3 − 1 

Best Upper 
Bound Currently 

Discovered 
 

n1 = n2 

= n3 − 1 

Best Upper 
Bound Currently 

Discovered 

n1 = n2 

= n3 − 1 

Best Upper 
Bound Currently 

Discovered 
1 1 18 605 35 2293 

2 7 19 674 36 2427 

3 17 20 746 37 2565 

4 31 21 822 38 2707 

5 48 22 902 39 2853 

6 68 23 986 40 3003 

7 92 24 1074 41 3156 

8 120 25 1166 42 3312 

9 152 26 1262 43 3472 

10 188 27 1362 44 3636 

11 227 28 1466 45 3804 

12 269 29 1573 46 3976 

13 315 30 1683 47 4152 

14 365 31 1797 48 4332 

15 419 32 1915 49 4516 

16 477 33 2037 50 4704 

17 539 34 2163 51 4896 
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Therefore, for any [n1 ≥ 4, n2 = n3 – 1], it follows that 
 

hu (n2=n3−1) =	
ەۖۖ
۔ۖ
ۓۖ
	
ଶଷ ∙ ݅௠௔௫ଷ + 5 ∙ ݅௠௔௫ଶ + ቀଶଷ଼ − 2 ∙ ݊ଵቁ ∙ ݅௠௔௫ + 2 ∙ ݊ଵ ∙ ݊ଶ − ݊ଵ + ଵ݊					ࢌ࢏						3 − ݅௠௔௫ଶ − 5 ∙ ݅௠௔௫ ≤ 5
ଶଷ ∙ ݅௠௔௫ଷ + 6 ∙ ݅௠௔௫ଶ + ቀସଷଷ − 2 ∙ ݊ଵቁ ∙ ݅௠௔௫ + 2 ∙ ݊ଵ ∙ ݊ଶ − 2 ∙ ݊ଵ + ଵ݊					ࢌ࢏8 − ݅௠௔௫ଶ − 5 ∙ ݅௠௔௫ > 5

  (17) 
 

where ݅௠௔௫	is the maximum value i	∈	ℕ0 such that ݊ଵ ≥ ݅ଶ + 5 ∙ ݅ + 4  

→	݅௠௔௫ = ቔଵଶ ∙ ൫ඥ4 ∙ ݊ଵ + 9 − 5൯ቕ. 
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