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1 Introduction

Lucas [10] in 1876 introduced a sequence, called Perrin sequence after R. Perrin [13]. The well
known Perrin and Cordonnier sequences are respectively

Qn = Qn−2 +Qn−3 for n > 3 and Q1 = 0, Q2 = 2, Q3 = 3

and
Pn = Pn−2 + Pn−3 for n > 3 and P1 = P2 = P3 = 1.

The characteristic equation associated with the Perrin and Cordonnier sequences is

x3 − x− 1 = 0

with real solution ρ ≈ 1, 324718, called plastic number. The plastic number corresponds to the
golden number φ ≈ 1, 618034 associated with the Fibonacci numbers, for example,
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lim
n→∞

Qn+1

Qn

= lim
n→∞

Pn+1

Pn
= ρ.

In [14], authors defined associated polynomials of Perrin and Cordonnier sequences as

Qn(x) = x2Qn−2(x) +Qn−3(x) for n > 3 and Q1(x) = 0, Q2(x) = 2, Q3(x) = 3x

and

Pn(x) = x2Pn−2(x) + Pn−3(x) for n > 3 and P1(x) = 1, P2(x) = x, P3(x) = x2

respectively, and studied on these polynomials. In addition, Kaygısız and Bozkurt [2] defined k
sequences of generalized order-k Perrrin numbers.

Many researchers studied on determinantal and permanental representations of number
sequences. For example, Minc [11] defined a square matrix whose permanent is equal to the
generalized order-k Fibonacci numbers. Some of other such papers are [3, 4, 5, 6, 7, 8, 9, 12, 15].

In this paper we give some determinantal and permanental representations of associated poly-
nomials of Perrin and Cordonnier numbers by using various Hessenberg matrices.

2 The determinantal representations

An n× n matrix An = (aij) is called lower Hessenberg matrix if aij = 0 when j − i > 1 i.e.,

An =



a11 a12 0 · · · 0

a21 a22 a23 · · · 0

a31 a32 a33 · · · 0
...

...
...

...
an−1,1 an−1,2 an−1,3 · · · an−1,n
an,1 an,2 an,3 · · · an,n


.

Theorem 2.1 ([1]). Let An be the n × n lower Hessenberg matrix for all n ≥ 1 and define
det(A0) = 1. Then det(A1) = a11 and for n ≥ 2

det(An) = an,n det(An−1) +
n−1∑
r=1

((−1)n−ran,r
n−1∏
j=r

aj,j+1 det(Ar−1)).

Theorem 2.2. Let n ≥ 1 be an integer, Qn(x) be the associated polynomials of Perrin numbers
and Cn = (crs) be an n× n Hessenberg matrix, where
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crs =



ix2 if r − s = −1
i if s 6= 1 and r − s = 1

− 1

x4
if s 6= 1 and r − s = 2

2i

x2
if s = 1 and r − s = 1

− 3x

x4
if s = 1 and r − s = 2

0 otherwise

i.e.,

Cn =



0 ix2 0 0 0 0

2i

x2
0 ix2 0 0 0

−3x
x4

i 0 ix2 0 0

0
−1
x4

. . . . . . . . . 0

... . . . . . . i 0 ix2

0 0 0
−1
x4

i 0


Then, det(Cn) = Qn(x), where i =

√
−1.

Proof. Proof is by mathematical induction on n. The result is true for n = 1 by hypothesis.
Assume that it is true for all positive integers less than or equal to n, that is det(Cn) = Qn(x).

Using Theorem 2.1 we have

det(Cn+1) = cn+1,n+1 det(Cn) +
n∑
r=1

(
(−1)n+1−rcn+1,r

n∏
j=r

cj,j+1 det(Cr−1)

)

=
n−2∑
r=1

(
(−1)n+1−rcn+1,r

n∏
j=r

cj,j+1 det(Cr−1)

)

+
n∑

r=n−1

(
(−1)n+1−rcn+1,r

n∏
j=r

cj,j+1 det(Cr−1)

)

=
n∑

r=n−1

(
(−1)n+1−rcn+1,r

n∏
j=r

cj,j+1 det(Cr−1)

)

= (−1)n+1−n+1cn+1,n−1

n∏
j=n−1

cs,s+1 det(Cn−2)

+ (−1)n+1−ncn+1,ncn,n+1 det(Cn−1)
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= (
−1
x4

)ix2ix2 det(Cn−2) + (−1)i.ix2 det(Cn−1)

= det(Cn−2) + x2 det(Cn−1).

From the hypothesis and the definition of associated polynomials of Perrin numbers, we obtain

det(Cn+1) = x2Qn−1(x) +Qn−2(x) = Qn+1(x).

Therefore, the result is true for all possitive integers.

Example 2.3. We obtain Q5(x), by using Theorem 2.2.

det(C5) = det



0 ix2 0 0 0

2i

x2
0 ix2 0 0

− 3x

x4
i 0 ix2 0

0
−1
x4

i 0 ix2

0 0
−1
x4

i 0


= 3x3 + 2.

Theorem 2.4. Let n ≥ 2 be an integer, Pn(x) be the associated polynomials of Cordonnier
numbers and Pn = (prs) be an n× n Hessenberg matrix, where

prs =



ix2 if r − s = −1
i if s 6= 1 and r − s = 1
−1
x4

if s 6= 1 and r − s = 2

i

x2
if s = 1 and r − s = 1

−1
x3

if s = 1 and r − s = 2

0 otherwise.

Then
det(Pn) = Pn−1(x)

where i =
√
−1.

Proof. Proof is similar to the proof of Theorem 2.2 using Theorem 2.1.

Theorem 2.5. Let n ≥ 1 be an integer, Qn(x) be the associated polynomials of Perrin numbers
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and Bn = (bij) be an n× n Hessenberg matrix, where

bij =



−x2 if i− j = −1
1 if j 6= 1 and i− j = 1
1

x4
if j 6= 1 and i− j = 2

2

x2
if j = 1 and i− j = 1

3x

x4
if j = 1 and i− j = 2

0 otherwise

i.e.,

Bn =



0 −x2 0 0 0 0

2

x2
0 −x2 0 0 0

3x

x4
1 0 −x2 0 0

0
1

x4
. . . . . . . . . 0

... . . . . . . 1 0 −x2

0 0 0
1

x4
1 0


.

Then
det(Bn) = Qn(x).

Proof. Proof is similar to the proof of Theorem 2.2 using Theorem 2.1.

Example 2.6. We obtain Q6(x), by using Theorem 2.5.

detB6 = det



0 −x2 0 0 0 0

2

x2
0 −x2 0 0 0

3x

x4
1 0 −x2 0 0

0
1

x4
1 0 −x2 0

0 0
1

x4
1 0 −x2

0 0 0
1

x4
1 0



= 3x+ 2x4.

Theorem 2.7. Let n ≥ 2 be an integer, Pn(x) be the associated polynomials of Cordonnier
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numbers and Sn = (sij) be an n× n Hessenberg matrix, where

sij =



−x2 if i− j = −1
1 if j 6= 1 and i− j = 1

1

x4
if j 6= 1 and i− j = 2

1

x2
if j = 1 and i− j = 1

1

x3
if j = 1 and i− j = 2

0 otherwise.

Then
det(Sn) = Pn−1(x).

Proof. Proof is similar to the proof of Theorem 2.2 using Theorem 2.1.

3 The permanent representations

Let A = (ai,j) be an n× n square matrix over a ring R. The permanent of A is defined by

per(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i)

where Sn denotes the symmetric group on n letters.

Theorem 3.1 ([12]). Let An be an n × n lower Hessenberg matrix for all n ≥ 1 and define
per(A0) = 1. Then per(A1) = a11 and for n ≥ 2

per(An) = an,nper(An−1) +
n−1∑
r=1

(an,r

n−1∏
j=r

aj,j+1per(Ar−1)).

Theorem 3.2. Let n ≥ 2 be an integer, Qn(x) be the associated polynomials of Perrin numbers
and Hn = (hrs) be an n× n Hessenberg matrix, where

hrs =



−ix2 if r − s = −1
i if s 6= 1 and r − s = 1
−1
x4

if s 6= 1 and r − s = 2

2i

x2
if s = 1 and r − s = 1

−3x
x4

if s = 1 and r − s = 2

0 otherwise
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i.e.,

Hn =



0 −ix2 0 0 0 0
2i

x2
0 −ix2 0 0 0

−3x
x4

i 0 −ix2 0 0

0
−1
x4

. . . . . . . . . 0

... . . . . . . i 0 −ix2

0 0 0
−1
x4

i 0


.

Then
per(Hn) = Qn(x)

where i =
√
−1.

Proof. Proof is similar to the proof of Theorem 2.2 by using Theorem 3.1.

Example 3.3. We obtain Q6(x), by using Theorem 3.2.

perH6 = per



0 −ix2 0 0 0 0
2i

x2
0 −ix2 0 0 0

−3x
x4

i 0 −ix2 0 0

0
−1
x4

i 0 −ix2 0

0 0
−1
x4

i 0 −ix2

0 0 0
−1
x4

i 0


= 3x+ 2x4.

Theorem 3.4. Let n ≥ 2 be an integer, Pn(x) be the associated polynomials of Cordonnier
numbers and Tn = (trs) be an n× n Hessenberg matrix, where

trs =



−ix2 if r − s = −1
i if s 6= 1 and r − s = 1
−1
x4

if s 6= 1 and r − s = 2

i

x2
if s = 1 and r − s = 1

−1
x3

if s = 1 and r − s = 2

0 otherwise.

Then
per(Tn) = Pn−1(x)

where i =
√
−1.
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Proof. Proof is similar to the proof of Theorem 2.2 by using Theorem 3.1.

Theorem 3.5. Let n ≥ 2 be an integer, Qn(x) be the associated polynomials of Perrin numbers
and Ln = (lij) be an n× n Hessenberg matrix, where

lij =



x2 if i− j = −1
1 if j 6= 1 and i− j = 1
1

x4
if j 6= 1 and i− j = 2

2

x2
if j = 1 and i− j = 1

3x

x4
if j = 1 and i− j = 2

0 otherwise.

Then
per(Ln) = Qn(x).

Proof. Proof of the theorem is similar to the proof of Theorem 2.2 using Theorem 3.1.

Theorem 3.6. Let n ≥ 2 be an integer, Pn(x) be the associated polynomials of Cordonnier
numbers and Un = (uij) be an n× n Hessenberg matrix, where

uij =



x2 if i− j = −1
1 if j 6= 1 and i− j = 1
1

x4
if j 6= 1 and i− j = 2

1

x2
if j = 1 and i− j = 1

1

x3
if j = 1 and i− j = 2

0 otherwise.

Then
per(Un) = Pn−1(x).

Proof. Proof of the theorem is similar to the proof of Theorem 2.2 using Theorem 3.1.

Corollary 3.7. If we rewrite Theorem 2.2, Theorem 2.5, Theorem 3.2 and Theorem 3.5 for x = 1,

we have
det(Cn) = det(Bn) = per(Hn) = per(Ln) = Qn.

Corollary 3.8. If we rewrite Theorem 2.4, Theorem 2.7, Theorem 3.4 and Theorem 3.6 for x = 1,

we have
det(Pn) = det(Sn) = per(Tn) = per(Un) = Pn−1.

17



References

[1] Cahill, N. D., J.R. D’Errico, D. A. Narayan, J. Y. Narayan, Fibonacci determinants, College
Mathematics Journal, Vol. 33, 2002, 221–225.

[2] Kaygısız, K., D. Bozkurt, k-Generalized order-k Perrin number presentation by matrix
method, Ars Combinatoria., Vol. 105, 2012, 95–101.
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[6] Kılıç, E., A. P. Stakhov, On the Fibonacci and Lucas p-numbers, their sums, families of
bipartite graphs and permanents of certain matrices, Chaos, Solition and Fractals, Vol. 40,
2009, 2210–2221.
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