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It is an elementary result that every positive integer can be expressed as a sum of squares, 
either by virtue of the Four Square Theorem of Lagrange (see [2] or [3]) or more trivially by 
recognizing that 1 = 12 can be used as a repeated summand with any multiplicity. But what if 
we restrict the size of the square summands below by n2 for some fixed value of n? It is evident 
that no integer less than n2 can be expressed as a sum of these large squares, and that the first 
location where two consecutive integers could possibly both be expressed as sums of these 
squares must be at least 2n2. However, since n2 and (n + 1)2 are relatively prime, Sylvester’s 
solution of the Frobenius Coin Problem for two coins [5] shows that every integer greater than 
or equal to (n2 – 1)[(n + 1)2 – 1] can be written as a non-negative linear combination of this 
restricted set of squares.  

In this paper, we investigate the location of the minimum threshold value beyond which 
every integer is expressible as a sum of these large squares, specifically 

V(n) = min{M : m  M  m is expressible as a sum of n2, (n + 1)2, (n + 2)2, …} 

We provide pseudo code for a simple sieve solution for finding this threshold value, and 
demonstrate that its growth as a function of n is slower than any power of n greater than 2. 
 
Theorem:  V(n) = o(n2+ϵ)  for any ϵ > 0. 
 

For our presentation we will use the “conductor” notation of [4].  For any set S of mutually 
relatively prime positive integers the conductor χ(S) is defined by   

χ(S) = min{M: m  M  m is an element of the semigroup generated by S} 

so that V(n) = χ({n2, (n + 1)2, (n + 2)2, …}). Note that the conductor definition just adds 1 to 
the traditional “Frobenius number” for the set S considered as a collection of coins, but it 
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makes many important results much less cumbersome to state.  First, we prove an extension of 
a result of Brauer and Shockley [1]. 
 
Lemma:  Suppose that the set S of mutually prime positive integers is comprised of two types 
of positive integer, labeled a1, a2, …  and b1, b2 …, and suppose that the positive integer t 
divides each of the integers a1, a2, ….  Then, 

χ({a1, a2, …, b1, b2, …})  t χ({a1/t, a2/t, …, b1, b2, …}) + χ({t, b1, b2, …}). 
 
Proof:  Suppose m is an integer satisfying m  t χ({a1/t, a2/t, …, b1, b2, …}) + χ({t, b1, b2, …}), 

and set w = m  t χ({a1/t, a2/t, …, b1, b2, …}).  Then, w  χ({t, b1, b2, …}), so that we can write 

w as a finite sum w = ct + d1b1 + d2b2 + …  with c  0 and each di  0.  Now, we define x to be 

the number x = ct + t χ({a1/t, a2/t, …, b1, b2, …}).  Since x/t  χ({a1/t, a2/t, …, b1, b2, …}), we 

can write x/t as a finite sum x/t = e1(a1/t) + e2(a2/t) + … + f1b1 + f2b2 + … with each  ei  0 and 

each fi  0.  Then, we have 

m = (w – ct) + t(x/t) = d1b1 + d2b2 + … + t [e1(a1/t) + e2 (a2/t) + … + f1b1 + f2b2 + …] 

= e1a1 + e2a2 + … + (d1+ tf1)b1 + (d2 + tf2)b2 + … , 

and this is a sum of elements of S.  

In particular, if we apply this to a set of large squares with the a1, a2, … being the even 
squares, b1, b2, … being the odd squares and t = 4, then we obtain the following result. 
 
Corollary:  V(n)  4V(ceiling(n/2)) + 3[(n + 1)2  1]. 
 
Proof: The numbers a1/4, a2/4, … are consecutive squares, and a1/4  b1.  So by writing 
sqrt(a1)/2 as ceiling(n/2), we have t χ({a1/t, a2/t, …, b1, b2, …}) = 4V(ceiling(n/2)). The 
remaining term is found by writing χ({t, b1, b2, …})  χ({t, b1}) = (t  1)(b1  1) with b1 equal 
to either n2 or (n + 1)2.  

We can now prove the main result. 
 
Proof of Theorem: Define β = 2 + ϵ/2 and choose N  ceiling[1/(2(12/β)  1)].  Then for n  N 
we have the following chain of consequences 

1/n  2(12/β)  1 

(1 + 1/n)/2  (1/4)1/β 

[(n + 1)/2]β/nβ  1/4 

nβ  4[(n + 1)/2]β  0 

Now define f(n) = 3(2n)2/[nβ  4[(n+1)/2]β]. For n  N this is a positive and decreasing function 
of n, since f ′(n) = [12n2(2  β)[nβ1 – 2[(n + 1)/2]β1]  48n[(n + 1)/2]β1]/[nβ  4[(n + 1)/2]β]2 
with 2  β < 0, nβ1 – 2[(n + 1)/2]β1 > 0, and the denominator [nβ – 4[(n + 1)/2]β]2 > 0.  Then 
define k1 = f(N), k2

 = max{V(n)/nβ : n = 1, …, N}, and k = max{k1, k2}.  Then, we automatically 
have V(n)  knβ for all n  N. We will now establish this bound for all n by induction. Suppose 
that n > N and that we already have V(ceiling(n/2))  k(ceiling(n/2))β. Then, by the corollary, 
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V(n)  4k(ceiling(n/2))β + 3[(n+1)2  1] 

  4k[(n + 1)/2]β + 3(n+1)2 

 = knβ[22  β(1 + 1/n)β + 3n β(n+1)2/k] 

  knβ[22  β(1 + 1/n)β + 3n β(2n)2/f(n)] 

 = knβ 

This shows that V(n) = O(nβ) = o(n2+ϵ).  

This proof actually provides an explicit construction of a universal bound V(n)  knβ whenever 
we have already calculated V(n) for all n = 1, …, N with N  ceiling[1/(2(12/β)  1)]. The 
required N goes up steeply with decreasing β, as shown below (Table 1). 

β Minimum value of N 

3 4 
2.1 30 
2.01 290 
2.001 2887 
2.0001 28855 
2.00001 288541 

Table 1. 

Using a value of N higher than the listed minimum can dramatically improve the 
tightness of the bound you can compute, since k1 = f(N) for the decreasing function f. For the 
best results you should increase N until the values of k1 and k2 are nearly equal, if possible. 

We have calculated V(n) for n = 1, …, 200, using a simple sieve program based on the 
pseudo code 

max_coin_root=10 
max_index=max_coin_root^2 
FOR n = 3 TO 200 

flag = TRUE 
WHILE flag DO  

FOR index = 1 TO max_index 
a[index] = FALSE 

NEXT (index) 
FOR coin_root = n TO max_coin_root 

a[coin_root^2] = TRUE 
FOR index = coin_root^2+1 TO max_index 

a[index]=a[index]||a[index – coin_root^2] 
NEXT (index) 

NEXT (coin_root) 
FOR index = max_index TO 1 STEP -1 

IF not(a[index]) THEN DO 
IF index+n^2 > max_index THEN DO 

max_index = 2*max_index 
max_coin_root = FLOOR(max_index^.5) 
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BREAK (back to WHILE) 
ELSE DO 

PRINT n, index+1 
max_index = CEILING(1.1*(1+1/n)^2*index+(n+1)^2) 
max_coin_root=FLOOR(max_index^.5) 
flag = FALSE 
BREAK (back to WHILE) 

ENDIF 
ENDIF 

NEXT (index) 
ENDWHILE 

 NEXT (n) 

 
Implementing this program on Mathematica provided the first 50 values in 5 minutes, the 

first 100 values in about an hour, and all 200 values overnight. The main idea is to dynamically 
allocate only enough space to complete the required computations for each “n” as we get to it.  
For each “n” all the needed positions of the vector “a” are initially set to the Boolean value 
FALSE to show that no value of “index” has yet been expressed as a coin sum. The expression 
“coin_root^2” denotes the value of a coin being used.  This coin guarantees that “index” 
has a coin sum expression when “index” equals the value “coin_root^2”, and also 
whenever “index-coin_root^2” already has a coin sum expression. When we have used all 
of our coins, we count backwards from “max_index” until we find a location where 
“a[index]” is still FALSE. Hopefully, this value of “index” will be the largest integer that 
cannot be expressed as a coin sum. But we need to perform a check before we report 
“index+1” as the conductor for the set. We need to verify that there is a string of n2 
consecutive TRUE values following the FALSE, so that there cannot be a higher, out-of-range 
value of  “index” which also lacks a coin sum expression.  (Since the n2 coin is in our set, the 
presence of n2 consecutive TRUE values will guarantee that all the out-of-range values must 
also be TRUE.) If we do not find enough TRUE values, then we double the value of 
“max_index” and repeat the analysis for that value of “n”. 
 
If we find the required quantity of TRUE values, then we report “index+1” as the value of 
V(n), and allocate space for the analysis of V(n + 1).  The formula  

max_index = CEILING(1.1*(1+1/n)^2*index+(n+1)^2) 

is based on the fact that experimentally the fraction V(n)/n2 has only been observed to increase 
by a multiplicative factor of 1.1 or less when “n” is incremented by 1, except for the two 
starting cases where the new “n” value is 2 or 3. The “(n+1)^2” on the end is there to provide 
room for the required TRUE values. However, because the incremental growth of V(n)/n2 could 
at some point change in an unanticipated manner, it seems prudent to keep the test for the 
needed set of consecutive TRUE values in the program. Notice that whenever the value of 
“max_index” is changed, the value of “max_coin_root” is also changed so that all coins 
that could possibly have impact are considered in the next analysis.   

Here is an abbreviated table of V(n) values, with an extra column which supports our 
unproven conjecture that V(n) = O(n2). 
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n V(n) V(n)/n2 

1 1 1 
2 24 6 
3 88 9.77778 
4 120 7.5 
5 202 8.08 
6 313 8.69444 
7 377 7.69388 
8 456 7.125 
9 617 7.61728 

10 761 7.61 
20 2765 6.9125 
30 5524 6.13778 
40 9857 6.16063 
50 15233 6.0932 
60 21409 5.94694 
70 28193 5.75367 
80 36449 5.69516 
90 49049 6.05543 

100 57409 5.7409  
125 84993 5.43956 
150 122881 5.46138 
175 164865 5.38335 
200 215041 5.37603 

Table 2. 

Using these tabulated values, we are now ready to express specific formulas for bounds 
on the growth rate of V(n). For each β we use N = 200 to calculate the values of k1 and k2 from 
the proof of the theorem. The bound is V(n)  knβ with k = max(k1, k2). For the rows where 
k1 > k2 these bounds might be substantially tightened by tabulating more values V(n) in order to 
use a larger value for N. 

β k1 k2 

2.9 0.2234 3.6377 
2.8 0.4146 4.0602 
2.7 0.7819 4.5316 
2.6 1.5063 5.0579 
2.5 2.9876 5.6452 
2.4 6.1856 6.3007 
2.3 13.725 7.0324 
2.2 34.702 7.8490 
2.1 123.63 8.7605 
2.05 381.46 9.2552 
2.04 558.00 9.3574 
2.03 964.52 9.4608 
2.02 2854.7 9.5653 
2.015 31917 9.6180 
2.0145 3438587 9.6233 

Table 3. 
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