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Abstract 
 
This paper utilises a modification of q-series to develop some partition 
formulas in the tradition of Bernoulli-Euler-Rogers-Ramanujan identities.  
Many of the ideas owe their development to the detailed pioneering work of 
Leonard Carlitz, with the added acknowledgement to the creative work 
currently being done by other number theorists working in this fertile area. 

 
1. Introduction 

 
Carlitz has used q-series in different ways in numerous papers; for example 
[2,3,6,7,8,9,15].  Recently, T. Kim and his colleagues have extended some elegant results 
in both analytic and elementary number theory with such series in a sequence of papers 
[19-21], and Ernst [18] has provided a current comprehensive history.  They are defined 
basically by 
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with ( ) .10 =q  In this brief note, we consider some identities related to the Bernoulli-
Euler partition formula 
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which can be used with the two formulae 
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(the Euler identity), to produce an identity which is not unlike the first Rogers-
Ramanujan identity (Andrews [1]}: 
 



7 

( ) .)1(1)/(
0

)15(1

0

2
12

∏ ∑∑
∞

=

∞

−∞=

++
∞

=

−−=
n n

nnnn
n

n

n xxxx  
(1.5)

 
2. Bernoulli-Euler Partition Formula 

 
Carlitz also devoted quite a few papers to the study of partitions [10,11,13,16] and the 
Rogers-Ramanujan identities [4,5,12,14,17].  While these are not the only papers by 
Carlitz on these topics, they do contain a representative sample of his techniques and 
results on these topics. 
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But, from (1.2), we have 
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which agrees with a special case of a formula due to Sylvester [22]. Whence, 
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which is a formula of the Rogers-Ramanujan type.   
 

3. The First Rogers-Ramanujan Identity 
 
The similarity can be seen more clearly if we carry out the following transformations on 
the first Rogers-Ramanujan identity. 
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Thus, 
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Identities (3.1) and (3.2) are both forms of the first Rogers-Ramanujan identity. 

 
4.  Concluding Comment 

 
Carlitz [17] has also obtained a similar identity by using the Jacobi identity, 
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