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Abstract: 
This paper considers some q-extensions of binomial coefficients formed 
from rising factorial coefficients.  Some of the results are applied to a Mö-
bius Inversion Formula based on extensions of ideas initially developed by 
Leonard Carlitz. 
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1. Introduction 
We know from the Möbius Inversion Formula that  
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in which )(nμ is the Möbius function 
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If we now take  
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where the jp are distinct primes, then it can be verified by a proof similar to the 
one which appears shortly that (1.1) and (1.2) reduce to  
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and 
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respectively, where for brevity we put 
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and 
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 Leonard Carlitz generalized many results by considering q-series as ana-
logues of factorials, and from them he constructed a q-series analogue of the ordi-
nary binomial coefficient.  In that spirit we shall determine q-series results analo-
gous to (1.3) and (1.4) 

 
2. q-series 

Carlitz has used q-series in numerous papers; for example [1,2,3,4,5,6,7].  More 
recently, T. Kim and his colleagues have extended some elegant results in both 
analytic and elementary number theory with such series in a sequence of papers 
[10,11,12].  The q-series are defined basically by 
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with ( ) .10 =q  Arising out of these are the so-called q-binomial coefficients which 
are analogous to ordinary binomial coefficients.  Their simplest definition is 
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(2.2) 

We now define (formally) 
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and we seek to express rf in terms of jg . 
 

3. Preliminary Results 
Firstly, we use the result 
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in which 
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and ( ) 10 =a . This is very similar to an expansion due to Cauchy [9] and noted by 
Carlitz [9].  If we put a = 0 in (3.1), we get  
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and if we put kxa −= and replace z by zxk− we obtain 
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which, for |x| < 1, yields 
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(3.3) 

 
4. Relevant Exponential Functions 

Carlitz [8] has defined a relevant exponential function, namely, 
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and so, from (3.2), 
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Then, from the definition of rg we get 
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If we multiply each side by ( )( ) 1−ze where ( )( ) 1−ze is such that  
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we find that 
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Whence, 
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which is the main result, and which is the required analogue of (1.4). 
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