PROPERTIES OF THE SANDOR FUNCTION

GABRIEL MINCU AND LAURENTIU PANAITOPOL

ABSTRACT. For $x > 0$ one define the function $S(x) = \min\{m \in \mathbb{N} | x \leq m!\}.$ ABSTRACT. For $x > 0$ one define the function $S(x) = \min\{m \in \mathbb{N} | x \le m : f.$
We prove that for $x > \sqrt{13!}$ the interval $(S(x), S(x^2))$ contains at least a prime number and that for real $x, y > 0$ the inequality $S(x) + S(y) \geq S(xy)$ holds true. We also study the convergence of a couple of number series involving $S(x)$.

J. Sandor introduced in [3] for $x > 0$ the function $S(x) = \min\{m \in \mathbb{N} | x \le m!\}$, about which he proved that

$$
(1) \tS(x) \sim \frac{\log x}{\log \log x}.
$$

The consequence $S(x^2) \sim 2S(x)$ of (1) together with the Bertrand-Tchebychev theorem suggest us the following Proposition:

Proposition 1. For all real $x > \sqrt{13!} \approx 78911.47445$, the interval $(S(x), S(x^2))$ contains at least a prime number.

For the proof of this Proposition, we will need the following Lemma:

Lemma 2. *a)* For all integers $n \geq 2$ we have

$$
(2) \qquad \log(n-1)! > n \log n - n - \log n.
$$

b) For all integers $n \geq 13$ we have

$$
(3) \t\t \tlog n! < n \log n - 0.83n.
$$

Proof. We will prove both relations using induction on n.

a) Relation (2) obviously checks out for $n = 2$. If we suppose it true for $n \geq 2$, we obtain

$$
(4) \t\t \tlog n! > n \log n - n.
$$

on the other hand, the well-known relation $1 > \log (1 + \frac{1}{n})^n$ implies

(5)
$$
n \log n - n > (n+1) \log(n+1) - (n+1) - \log(n+1);
$$

Combining (4) with (5), we get $\log n! > (n+1) \log(n+1) - (n+1) - \log(n+1)$, so (2) is still true for $n + 1$.

b) Computer checking shows that (3) is true for $n = 13$. If we suppose it true for $n \geq 13$, we obtain

(6)
$$
\log(n+1)! < n \log n - 0.83n + \log(n+1).
$$

Key words and phrases. Sandor function, prime numbers, inequalities, series. 2000Mathematics Subject Classification:11A25,11A41.

Now, using the inequality $\log (1 + \frac{1}{n})^n > 0.83$ (which holds for every $n \ge 3$), we get

(7)
$$
n \log n - 0.83n + \log(n+1) < (n+1) \log(n+1) - 0.83(n+1).
$$

Relations (6) and (7) give $\log(n+1)! < (n+1)\log(n+1) - 0.83(n+1)$, so (3) is still true for $n + 1$, and we are done.

Proof of Proposition 1.

Let us denote $m = S(x)$ and $n = S(x^2)$. We first consider the case $m \ge 13$. Since $(m-1)! < x \le m!$ and $(n-1)! < x^2 \le n!$, we obtain $n! > ((m-1)!)^2$, so $\log n! > 2 \log(m-1)!$. Using Lemma 2, we get the inequality

(8)
$$
n(\log n - 0.83) > 2(m \log m - m - \log m).
$$

Rohrbach and Weiss showed in [2] that for any integer $n \geq 118$ we can find a prime $p \in (n, \frac{14}{13}n)$. Direct checking for the values $n < 118$ shows that for every $m \ge 9$ we can find a prime $p \in (m, \frac{4}{3}m)$. If we suppose that $n < \frac{4m}{3}$, relation (8) implies

(9)
$$
\frac{4m}{3} \left(\log m + \log \frac{4}{3} - 0.83 \right) > 2(m \log m - m - \log m),
$$

$$
\overline{S}_0
$$

(10)
$$
2(\log \frac{4}{3} - 0.83) + 3 + 3\frac{\log m}{m} > \log m.
$$

For $m \ge 13$, we have $3\frac{\log m}{m} < 0.5919114$; using (10), we get $\log m < 2.508$, leading to the contradiction $m < 12.29 < 13$.

Thus, for $m \geq 13$ we have $n \geq \frac{4m}{3}$. Since we noticed above that in the given conditions we can find a prime $p \in (m, \frac{4}{3}m)$, it follows that if $S(x) \ge 13$, the interval $(S(x), S(x^2))$ contains at least a prime number.

If $x \in (\sqrt{13!}, 13!]$ then $x^2 > 13!$, so $13 \in (S(x), S(x^2))$.

If $x \in (\sqrt{13}, 13)$ then $x > 13$; so $13 \in (\sqrt{3}, 3\sqrt{x})$.
Finally, if $x = \sqrt{13!} = 1440\sqrt{3003}$, then $S(x) = 9$ and $S(x^2) < 13$, so the interval $(S(x), S(x^2))$ contains no prime number.

We now study two series involving $S(x)$:

Proposition 3. a) The series

(11)
$$
\sum_{n=1}^{\infty} \frac{S(n+1) - S(n)}{n}
$$

is convergent and its sum is e. b) The series

(12)
$$
\sum_{n=1}^{\infty} \frac{S(2n) - S(n)}{n}
$$

is divergent.

Proof. a) Since we may write

$$
S(n+1) - S(n) = \begin{cases} 2, & \text{if } n = 1 \\ 1, & \text{if } n = k!, \quad k \ge 2 \\ 0, & \text{otherwise} \end{cases}
$$

we get

$$
\sum_{n=2}^{\infty} \frac{S(n+1) - S(n)}{n} = \sum_{k=2}^{\infty} \frac{1}{k!} = e - 2,
$$

so

$$
\sum_{n=1}^{\infty} \frac{S(n+1) - S(n)}{n} = 2 + \sum_{n=2}^{\infty} \frac{S(n+1) - S(n)}{n} = e.
$$

b) For $n \geq 2$ we have

$$
(13) \t S(2n) - S(n) \le 1.
$$

Let $m = S(n)$. If we require equality to hold in (13), we must have $(m-1)! < n \le m!$ and $m! < 2n \leq (m + 1)!$. Therefore, for a fixed m, the values of n for which $S(2n) - S(n) = 1$ and $S(n) = m$ are

(14)
$$
\frac{1}{2}m! + 1, \frac{1}{2}m! + 2, ..., m!
$$

Consequently, if we associate to each $m\geq 2$ the sum

(15)
$$
s_m = \frac{1}{\frac{1}{2}m!+1} + \frac{1}{\frac{1}{2}m!+2} + \dots + \frac{1}{m!},
$$

we may write

(16)
$$
\sum_{n=2}^{\infty} \frac{S(2n) - S(n)}{n} = \sum_{m=2}^{\infty} s_m.
$$

Since s_m has $\frac{1}{2}m!$ terms, it follows that $s_m \geq \frac{1}{2}$; using (16), case b) follows. \Box

Another interesting property of $S(x)$ is given in

Proposition 4. For all real numbers $x, y > 0$, $S(xy) \leq S(x) + S(y)$.

Proof. Let $S(x) = m$ and $S(y) = n$. Since $m! \geq x$ and $n! \geq y$, we get $m!n! \geq xy$. Since

$$
\frac{(m+n)!}{m!n!} = \binom{m+n}{n} \ge 1,
$$

it follows that $(m+n)! \geq m! n! \geq xy$. If we put $t = S(xy)$, t will be the least s such as $s! \geq xy$, so $m + n \geq t$, giving $S(x) + S(y) \geq S(xy)$.

Remarks:

1. The function S also has other interesting properties; for example, if one denotes by $\omega(n)$ the number of prime factors of n, one can easily show that $S(n) > \omega(n)$ for all $n \geq 2$.

2. The generalised S function (see [1]) is likely to have similar properties.

REFERENCES

- $[1]$ C. Adiga and K. Taekyn On a generalisation of the Sàndor function. Proc. of the Jangjian Math.Soc. No.2 (2002), 121-124.
- [2] H. Rohrbach and J. Weiss Zum finiten Fall des Bertrandschen Postulats. J. Reinen Angew. Math. 214/215 (1964), 432-440.
- [3] J. Sàndor, An additive analogue of the function S. Notes on Number Theory and Discrete Mathematics 7, no.2 (2001), 91-95.

Faculty of Mathematics Faculty of Mathematics Str. Academiei 14 Str. Academiei 14 RO-010014 Bucharest, RO-010014 Bucharest, Romania Romania gamin@al.math.unibuc.ro pan@al.math.unibuc.ro