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Abstract 
This paper considers some q-extensions of binomial coefficients.  Some of 
the results are applied to some generalized Fibonacci numbers, and others 
are included as ideas for further investigation, particularly into q-Bernoulli 
polynomials. 

 
 
 

1. Introduction 
 

Leonard Carlitz generalized many results by considering q-series as analogues of factori-
als, and from them he constructed a q-series analogue of the ordinary binomial coeffi-
cient.  Variations of these had been studied earlier by Gauss and Cayley (see Macmahon 
[18] and Gordon and Houten [10,11]). More recently, Blumen [2] has generalized the q-
binomial theorem with non-commuting quantities in quantum algebras and quantum sup-
eralgebras. 

The form of these analogues suggests a similar analogue of the binomial coeffi-
cient formed from rising factorials. With the development of the properties of the rising 
factorial it is shown in this paper that the rising binomial coefficient is in fact a generali-
zation of the ordinary binomial coefficient.  Elsewhere the present author, with Richard 
Ollerton, has extended other ways of generalizing binomial coefficients [19]. 

 
 

2. q-series 
 

Carlitz has used q-series in numerous papers; for example [3,4,5,6,8,9].  Recently, T. Kim 
and his colleagues have extended some elegant results in both analytic and elementary 
number theory with such series in a sequence of papers [15-17].  They are defined basi-
cally by 
 

( ) ( )( ) ( ),1...11 2 n
n qqqq −−−=  (2.1)

 
with ( ) .10 =q  Arising out of these are the so-called q-binomial coefficients which are 
analogous to ordinary binomial coefficients.  Their simplest definition is 
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Carlitz [7] and Horadam[13] have used them in the form that follows in their papers on 
generating functions for powers of elements of second order recursive sequences.  If we 
let  
 

α
β

=q  

 
in the above definition, where βα ,  are the roots of  
 

,02 =+− qpxx  
 
then we find that  
 

( )( ) ( )( )
( )( ) ( )( ) ( )( )

)(
,

)(

21

11)(

2

1

...
...

1...11
1...1

knk
knn

knk

k

knnnknk

k

knn

CU

k
n

UUU
UUU

k
n

−

−

+−−−

+−

=
⎭
⎬
⎫

⎩
⎨
⎧

=

=

−−−

−−
=⎥

⎦

⎤
⎢
⎣

⎡

α

α

α

α
β

α
β

α
β

α
β

α
β

 

 
in which the sequence { }nU is generated by the homogeneous second order linear recur-
rence relation 
 

21 −− −= nnn qUpUU , 

 
and 
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(2.3) 

 
The significance of the knC , can be seen in some papers by Hoggatt [12] in which 

he developed properties for ordinary Fibonacci numbers where the ⎥
⎦

⎤
⎢
⎣

⎡
k
n

were called Fibo-
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nomial coefficients.  The properties of these were extended in Jerbic’s thesis [14] under 
the supervision of the late Verner Hoggatt.  A preliminary result is 
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Proof: 
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Equation (2.4) is a variation of the well-known identities 
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and (Andrews [1]) 
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Equation (2.4) gives rise to two new results for generalized Fibonacci numbers.  The first 
of these is 
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Proof: 
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and the result follows after induction. 
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The second of the two results is 
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Proof: 
It can be readily shown that 
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and the required result comes from the use of the definition of knC , .  This result can be 
compared with Equation (F) of Hoggatt [12]. 
 
 

3. Rising Factorials 
 

The falling factorial, an r-permutation of n distinct objects, is given by 
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and is such that 
 

),1,1(
),1(),(),(

−−=
−−=∇

rnrP
rnPrnPrnP

 

 
(see, for example Riordan [20]). Similarly, we can show for the rising factorial of n that 
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This is a recurrence relation for rn , which is an r permutation of n+r-1 objects, and which 
is related to the Stirling numbers.  Now, Carlitz [6] considers an equation of the form 
 



 17    

)1(),()()1( 1 ≥=−+ − xxnfxfxf nnn  
 

as an extension of the criterion for an Appell set.  Thus (3.1) may be considered as exten-
sion of this criterion. 

It is well known that  
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in which rn is the falling r-factorial of n.  Consider 
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in which rn is the rising r-factorial of n. Thus 
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which is also suggested by the Gauss-Cayley form of the generalized binomial coeffi-
cient.  This leads to  
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This can also be put in the form 
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Another line of approach is to define 
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We note in passing that Riordan [20] has stated that the falling factorial occupies 

a central position in the finite difference calculus because 
 

1−=∇ nn nxx  
 

which is analogous to the result which we have already proved in (3.1), namely 
 

1−=∇ nn nxx . 
 

 
4. Concluding Comments 

 
We can also define a rising factorial analogue of the exponential function as follows: Let 
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In particular, 
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where ),( sjζ represents the generalized Zeta function defined by 
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These and the results in Section 3 can be used to develop q-Bernoulli polynomials. 
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