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ABSTRACT 
This paper looks at some of the properties of the auxiliary equation asso-
ciated with the  plastic number which, in turn, is related to the sequences 
of numbers { }nP , { }nQ and { }nR respectively, defined by  
 

,3,32 >+= −− nPPP nnn  ,1,1,1 321 === PPP  

,3,32 >+= −− nQQQ nnn  ,3,2,0 321 === QQQ  

,3,32 >+= −− nRRR nnn  .1,0,1 321 === RRR  
 
The dominant root of the associated auxiliary equation is found by a con-
traction process related to Bernoulli’s iteration and the Jacobi-Perron Al-
gorithm.  The latter is one way of generalizing the ordinary continued 
fraction algorithm and an alternative way is explored which also relates 
to the auxiliary equations of the sequences.  Various methods for reduc-
tion of the order of the cubic auxiliary equation are also considered. 

 
 
 

1. INTRODUCTION  
  

It is the aim of this paper to explore some of the properties of the auxiliary equation (in 
Equation (2.1) below) and its dominant root, the plastic number, for the sequences of 
Cordonnier{Pn}, Perrin{Qn}and van der Laan numbers { }nR , respectively, defined by 
third-order homogeneous recurrence relations in (1.1), (1.2) and (1.3) respectively. The 
historical background of these sequences is outlined in [23] and will not be repeated here 
in detail.  Suffice it to say that Equation (2.1) has distinct roots ββα ,),( p= , in which 
p≈1.324718 (the so-called plastic number) is the unique real solution and dominant root 
of (1.1).  Incidentally, the rather unattractive name “plastic number” (plastische getal) is 
due to van der Laan, not by allusion to synthetic materials, but in the continental sense of 
‘plastic’ = ‘three-dimensional, palpable’.   
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The plastic number corresponds to the golden number  φ≈1.618034 associated with the 
equiangular spiral related to the conjoined squares in Fibonacci numbers, for example,  
 

( ).limlim 11

n

n

n

n
Q

Q

nP
P

n
p ++

∞→∞→
== . 

  
Some essential definitions are listed here for ease of reference. Numbers Pn and Qn, along 
with the linking numbers Rn, are defined by recurrence relations or by generating func-
tions in Equations (1.1) to (1.6). The first few numbers are displayed in Table 1. 
 
Recurrence Relations 
 

,3,32 >+= −− nPPP nnn  ,1,1,1 321 === PPP  (1.1)
,3,32 >+= −− nQQQ nnn  ,3,2,0 321 === QQQ  (1.2)
,3,32 >+= −− nRRR nnn  .1,0,1 32 === RRRn  (1.3)

 
Generating Functions 
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N 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Pn 1 1 1 2 2 3 4 5 7 9 12 16 21 28 37 
Qn 0 2 3 2 5 5 7 10 12 17 22 29 39 51 68 
Rn 1 0 1 1 1 2 2 3 4 5 7 9 12 16 21 

 
Table 1: First few values of  nn QP  and nR  

 
 

2. AUXILIARY EQUATIONS 
 

The auxiliary equation for these numbers can be written as 
 

                                   =3x ,1+x  (2.1)
 
so that, in turn, 
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To speed up the process, Gnanadoss [7] suggested a contraction process as follows: 
 

( ) ,122236 ++== xxxx  
and so on, until  

128801226030170625 248 ++= xxx  

and 
,170625299426226030 249 ++= xxx  

 
so that the dominant root of the auxiliary equation is 
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which Gnanadoss compared with Hildebrand [10] for the same polynomial.  
More generally, we can further speed up the contraction with the following result. 
If 
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The result is similar to one in Henrici [9] and it can be generalized to any order [24]. For 
notational convenience, let 
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Proof of (2.2): We use induction on n.  Now, for n=0, 
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in which we have used the given values of .,, 321 AAA  Therefore, (2.2) is true for n=0. 
Assume the result is true for n=1,2,3,…,s. That is, 
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(inductive assumption). 
 
This establishes (2.2).  The general form of (2.2) is related to the Jacobi-Perron Algo-
rithm (JPA) [2]. The contraction is a form of Bernoulli’s iteration (Householder [14]). 
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At this stage one might note that Goldstern et al [8] have determined the asymptotic dis-
tribution function of the ratios of the terms of a linear recurrence.  In doing so they have 
studied the characteristic polynomials.  De Pillis [18] has highlighted fascinating and sur-
prising features of Newton’s formula for finding a root of a non-linear function when ap-
plied to cubic polynomials and has speculated on the generalization of his observations. 
 
For the homogeneous linear recurrence relation of order N represented by 
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with distinct roots αi, i=1,2,…,N,  the general solution is 
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Bernoulli’s method is an application of the equivalence between recurrence relations and 
their characteristic polynomials to find the dominant root α.  Then if A1≠0, 
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which has been investigated computationally by Turner [27].  Ferguson [5] also estab-
lished the limit of the ratio of adjacent terms as the dominant root of the cubic auxiliary 
polynomial.  In particular, for the sequence { }nG , where { }nG  is defined by the third or-
der recurrence relation 
 

,1,31 ≥+= −− nGGG nnn  (2.4)
 
with initial terms ,1321 === GGG  so that the first few terms are given by 
 

{ } { }.,...13,9,6,4,3,2,1,1,1=nG  
 

.465571231.1lim
1
≈

−∞→ n

n

G
G

n
 

 

 
Benjamin et al [1] provide a combinatorial proof that 
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Ferguson also showed that this lies as a sum of binomial coefficients lying upon lines of 
slope 2 through Pascal’s triangle; for example, 
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and so on.  Ferguson’s results relate to those of Sofo [26] who, inter alia, used the theory 
of difference-delay equations to prove that for {Gn}: 
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3. REDUCTION OF THE ORDER  
 

An alternative to developing new properties for these sequences of order 3 is to reduce 
them to generalized Fibonacci and Lucas sequences of order 2 since there are so many 
results in the literature for these sequences.  We shall consider three approaches to this 
idea, each of which sheds slightly different light on the underlying structures. 
 
We can take advantage of the fact that the characteristic equation (2.1) is in Cardano form 
and utilize some of its properties. Among these is 
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to reduce it by a method of Williams [28] to 
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in which )(1 bap += and .1 abq =   Equation (3.1) is then the characteristic equation of 
{ }nw , the second order sequence which satisfies 
 

2,2111 ≥−= −− nwqwpw nnn  (3.2)

which has been explored extensively by Horadam [12,13]. 
 
Another approach is to denote by E the endomorphism of the R-module RN of all se-
quences over an arbitrary commutative ring with unity which sends the sequence { }nP to 
the sequence { }1+nP [19]; that is, 
 

,1+= nn PEP  (3.3)

so that the third order recurrence relation (1.1) becomes 
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since 
 

αα 12 1+=  (3.4)
 
and where 
 

( ) ,0,1 >−=−= + nPPPEu nnnn αα  

and 
 

,2,2
1

1 >−−= −− nuuu nnn αα  (3.5)

so that 
{ } ( ){ }ααα 1,;1,1 −−≡ nn uu  

 
is a (non-integral) second order sequence in the notation of Horadam.  Similarly, 

 
{ } ( ){ }ααα 1,;2,3 −≡ nn vv  

 
is analogous to the Perrin sequence { }nQ .  Shannon and Horadam [25] have used this ap-
proach to develop a generating function for powers of elements of third order sequence in 
order to generalize second order results of Carlitz [4]. 
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In turn, this can be compared with the result of Kennedy [15] which yields the proposi-
tion that α is a root of the cubic equation (4.4), if and only if, α is a root of the quadratic 
equation 
 

,012 =−− xxα  (4.6)

which can be confirmed by substitution.  Then, from Galvin and Výborný [6], we have 
the proposition that α is a root of the quadratic equation (4.6), if and only if, α is a root of 
the linear equation 
 

.01 =−xα  (4.7)

 
 

4. SOME RESULTS OF LEON BERNSTEIN 
 

Observe, in passing, that the characteristic polynomial, x3-x-1, is also of interest because 
it represents a special case of polynomials of degree>2, in so far as its only real zero w 
turns out to be the fundamental unit of Q(α).  From before we have that  

 
,325.1≈α  

 
with conjugate roots 
 

i562.0662.0 +−≈β  
 
and 
 

i562.0662.0 −−≈β  
with 
 

.868.0≈= ββ  

 
Bernstein [3] has proved that (1,α,α2) is a minimal basis of Q(α).  He used a recursive ap-
proach to prove that 
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Hence, by comparing coefficients of α, 
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Following Bernstein, write the matrix 
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so that the characteristic equation of A is the same as that of the sequences. Furthermore, 
we can prove by induction on m that 
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so that { }nT  satisfies the recurrence relation (2.1) with initial conditions 
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Thus with some re-writing, we have x3-x-1 as the recursion function for 
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In this way, Bernstein showed with methods similar to those considered here, but from a 
different point of view, that the question of the zeros of f(n,2) is a combinatorial one. He 
observed further that the study of f(n,2) for real values of n and of  
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are open. The case f(n,1) yields the Fibonacci numbers, as is well-known, and they too 
are amenable to a combinatorial explanation [11].  More recently, Rieger [21] has applied 
Newton approximation to the Golden Section. His consideration of the continued fraction 
convergents in this context has also been developed by Moore [16,17] who has also con-
sidered the asymptotic behaviour of golden numbers, as has Prodinger [20]. 

 
 
 
 



11 

 
REFERENCES 

 
1. A. T. Benjamin, J. J. Quinn & J. A. Rouse. “Fibinomial Identities.” 10th International 

Conference on Fibonacci Numbers and Their Applications, Flagstaff, Arizona, 24-28 
June, 2002. 

2. Leon Bernstein. The Jacobi-Perron Algorithm. Its Theory and Application. Lecture 
Notes in Mathematics, 207, Springer-Verlag, Berlin, 1971. 

3. Leon Bernstein. “Zeros of the Functions ∑= ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−=

0

2
)1()(

i
i

i
in

nf . Journal of Num-

ber Theory. 6 (1974): 264-270. 
4. L. Carlitz. “Generating Functions for Powers of Certain Sequences of Numbers.” 

Duke Mathematical Journal. 29 (1962): 521-537. 
5. H. R. P. Ferguson. “On a Generalization of the Fibonacci Numbers Useful in 

Memory Allocation Schema; or All about the Zeroes of ,11 −− −kk zz  k>0.” The Fib-
onacci Quarterly. 14 (1976): 223-243. 

6. W Galvin & R. Výborný. “Remarks on Rational Roots of a Cubic.” International 
Journal of Mathematical Education in Science & Technology. 34 (2003): 765-770. 

7. A. A. Gnanadoss. “Contracting Bernoulli’s Iteration and Recurrence Relations.” The 
Mathematical Gazette. 44 (1960): 221-223. 

8. M. Goldstern, R. F. Tichy & G. Turnwald. “Distrbution of the Ratios of the Terms of 
a Linear Recurrence.” Monatshefte für Mathematik. 107 (1989): 35-55. 

9. P. Henrici. Discrete Variable Methods in Ordinary Differential Equations. New 
York: Wiley, 1962, Ch.5. 

10. F. B. Hildebrand. Introduction to Numerical Analysis. New York: McGraw-Hill, 
1956, p.461. 

11. V. E. Hoggatt Jr & D. A. Lind. “Fibonacci and Binomial Properties of Weighted 
Compositions.” Journal of Combinatorial Theory. 4(1968): 121-124. 

12. A. F. Horadam. “Generating Functions for Powers of a Certain Generalized Se-
quence of Numbers.” Duke Mathematical Journal. 32 (1965): 437-446. 

13. A. F. Horadam. “Basic Properties of a Certain Generalized Sequence of Numbers.” 
The Fibonacci Quarterly. 3 (1965): 161-176. 

14. A. S. Householder. The Numerical Treatment of a Single Non-Linear Equation. New 
York: McGraw-Hill, 1970. 

15. E. C. Kennedy. “A Note on the Roots of a Cubic.” American Mathematical Monthly. 
40 (1933): 411-412. 

16. G. A. Moore. “A Fibonacci Polynomial Sequence Defined by Multidimensional 
Continued Fractions; and Higher Order Golden Ratios.” The Fibonacci Quarterly. 31 
(1993): 354-364. 

17. G. A. Moore. “The Limit of the Golden Numbers is 3/2.” The Fibonacci Quarterly. 
32 (1994): 211-217. 

18. L. G. de Pillis. “Newton’s Cubic Roots.” Australian Mathematical Society Gazette. 
25 (1998): 236-241. 

19. A. J. van der Poorten. “A Note on Recurrence Sequences.” Journal & Proceedings, 
Royal Society of New South Wales. 106 (1973): 115-117. 



12 

20. H. Prodinger. “The Asymptotic Behaviour of the Golden Numbers.” The Fibonacci 
Quarterly. 34 (1996): 224-225. 

21. G. J. Rieger. “The Golden Section and Newton Approximation.” The Fibonacci 
Quarterly. 37 (1999): 178-179. 

22. A. G. Shannon. “The Jacobi-Perron Algorithm and Bernoulli’s Iteration.” The Math-
ematics Student. 42 (1974): 52-56. 

23. A. G. Shannon, Peter G. Anderson & A. F. Horadam, “Properties of Cordonnier, Per-
rin and van der Laan Numbers,” International Journal of Mathematical Education in 
Science and Technology, in press. 

24. A. G. Shannon & Leon Bernstein. “The Jacobi-Perron Algorithm and the Algebra of 
Recursive Sequences.” Bulletin of the Australian Mathematical Society. 8 (1972): 
261-277. 

25. A. G. Shannon & A. F. Horadam. “Generating Functions for Powers of Third Order 
Recurrence Sequences.” Duke Mathematical Journal. 38 (1971): 791-794. 

26. A. Sofo. Summing Series using Residues. PhD Thesis, Victoria University of Tech-
nology, Melbourne, 1998. 

27. P. R. Turner. Numerical Analysis. London: Macmillan, 1994, pp.60-61. 
28. K.S. Williams. “A Generalization of Cardano’s Solution of the Cubic.” The Mathe-

matical Gazette. 46 (1962): 221-223. 
 
AMS Classification Numbers: 11B37, 12D10, 65D15 
 
 


