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ABSTRACT. We consider a natural generalization ζ (k)(s) = ∑αn /n s (k ≥ 2) of the Riemann zeta 
function that arises from a modification of its classical Euler product expansion, for the most 
part here concentrating on the case k = 2. The associated coefficients αn correspond to a count-
ing problem that may be addressed via a family of multivariable generating functions. Exam-
ples computed via symbolic manipulation suggest a recursive structure for these functions, 
which we prove. With this result in hand, the calculation of the αn may be facilitated by a more 
efficient, doubly modular algorithm, as worked out in a detailed example. We conclude with 
some observations and questions for the case k > 2.   
 
KEYWORDS. Riemann zeta function, Euler product, Multivariable generating functions, Symbol-
ic manipulation algorithms. 
 

Introduction 

This paper links a variation on the Riemann zeta function with an elementary counting problem, 
and this in turn with a family of multivariable generating functions having a surprising and 
beautiful recursive structure, a structure that one might at least metaphorically describe as frac-
tal. To begin, among the most fundamental and celebrated properties of the Riemann zeta func-
tion is Euler product expansion: 
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where s = σ + it is a complex variable, the summation taken over all positive integers n, and the 
product is taken over all positive (rational) prime integers p. (See [I], [J], or [RV] for technical 
and historical background at various levels of detail.) Formally speaking, this equality is exactly 
the fundamental theorem of arithmetic: 
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Here the sum on the right is taken over all sequences {rj} of nonnegative integers that converge 
to 0, and pj denotes the jth positive prime. Thus every positive integer n occurs exactly once. 
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 To introduce the variation on ζ (s) that we have in mind, for each positive integer k define a 
subset Φk of the positive integers N+ containing precisely those n such that the number of 
primes (including multiplicity)  occurring in the prime factorization of  n is divisible by k. 
Hence, for example, 
 
     Φ1 = N+ 
     Φ2 = {1, 4, 6, 9, 10, 14, 15, 16,…} 
     Φ3 = {1, 8, 12, 18, 27,…} 
     Φ4 = {1, 16, 24, 36, 54,…} 
 
and, of course, this definition is contravariant in the sense that if k | m, then Φm ⊆ Φk . Accord-
ingly, for each k we shall construct a function ζ (k)(s) of the following form: 
 

∑
Φ∈

=
kn

s
nk

n
s α

ζ )()(  

 
where the coefficients αn (which implicitly depend on k as well as n) will be defined shortly. 
Our primary interest here is the case k = 2, and indeed the main object of our analysis will be 
the coefficients αn in this instance. (We consider k > 2 in the final section below.) 
 
 To define ζ (2)(s) consider the following modification of the Euler product: 
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Where absolutely convergent, the product is taken over all pairs of positive prime integers 
( p, q) where p ≥ q, and indeed we can make an elementary calculation to establish such con-
vergence in a half plane. Working logarithmically with absolute values, we have 
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and this converges for σ > 2 by comparison with –x ln(1 – x –σ ).  The point is that at least in 
this half plane we may rearrange the product ad libitum to obtain 
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for αn given combinatorially as follows. Let n have prime factorization  
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with  r = r1 + ⋅⋅⋅ + rl even. Then αn is the number of ways of pairing up r objects of which r1 
are of type 1, r2 are of type 2, etc. Note that what matters here are not the qj but the rj ; that is, 
α depends not so much on n as on the structure of n’s prime factorization. 
 
EXAMPLE 1. Let n = 7448 = 23 ⋅ 72 ⋅ 19. For present purposes, we might say that n has prime 
factorization structure given by the unordered triple (3, 2, 1), and evidently the number of pairs 
that may be drawn from a collection of 6 objects having the corresponding type structure (3 of 
type 1, 2 of type 2, 1 of type 3) is 3. Hence αn = 3, as reflected in the following exhaustive list 
of “double prime factorizations” of n: 
 

      (2⋅ 2)(2⋅ 7)(7⋅ 19) 
     (2⋅ 2)(7⋅ 7)(2⋅ 19) 
     (2⋅ 7)(2⋅ 7)(2⋅ 19) .  
 
Moreover, n = 50,168,173 = 112 ⋅ 17 ⋅ 293 yields the same value for αn . 

The Generating Function for Counting Pairs and Some Auxiliary Constructions 

In the sense of the preceding example, let n have factorization structure (r1 , …, rl ) and again 
let r = r1 + ⋅⋅⋅ + rl be the sum of the corresponding type counts. Then  
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is the generating function for the αn in the sense that αn is the coefficient of the monomial 
component of G whose exponents are, respectively, r1 , …, rl . (The product is taken over all 
pairs (i, j) with i ≤ j ≤ l, and the sum over all nonnegative k.) (See [T] for a general introduction 
to this technique.)  Note that in the definition of G and subsequent associated polynomials, in 
the spirit of object-oriented programming (polymorphism), we overload the function name. 
Thus according to this abuse of notation, G(x1 , x2) and G(x1 , x2, x3 ) are taken as distinct ex-
pressions that both use the identifier G, much in the same way that the determinant function is 
designated det for square matrices of all sizes. 
 
EXAMPLE 1, REVISITED. Again suppose that n has prime factorization structure given by the un-
ordered triple (3, 2, 1). Then l = 3, and a direct calculation shows that the coefficient of the 
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is (again) 3. 
 
We now direct our attention to the structure of this family of generating functions. The general 
idea is that we begin with a natural factorization of G(x1 , …, xl ) that gives rise to a family of 
multivariable polynomials which in turn reveal a key structural feature. It is this feature that al-
lows us to compute the coefficients of G(x1 , …, xl ) with a certain degree of efficiency and ele-
gance. 
 Let l ≥ 1. Then again overloading the notation, we define a family of functions F by  
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Then, perhaps after a repentant admission that the indexed product notation fails in the face of 
this particular instance of polymorphism, we have 
 
(1)     ),,,(),()(),,( 212111 ll xxxFxxFxFxxG …"… ⋅= , 
which already suggests a lurking recursive structure. We need introduce only one more pair of 
supplementary constructions. 
 For any l ≥ 1, the formal expansion 
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defines, for each j ≥ 0, a sequence of polynomials Aj (x1, …, xl ). Moreover, for l = 0, we may 
identify the corresponding Aj (a sequence of functions of no variables) with an alternating se-
quence of 1’s and 0’s:  
 

,...}0,1,0,1,0,1{}{ =jA . 
 
Thus with respect to our current notational conventions, we take a polynomial in no variables to 
be no more than a constant. Note that each of the polynomials Aj (x1, …, xl ) is symmetric (be-
cause each corresponding F is symmetric in all but the last variable) and that for 
A0 (x1, …, xl ) =1 for any valid l. 
 To understand the polynomials Aj (x1, …, xl  ) , we make use of the associated family of 
polynomials R(x1 , …, xl ) defined by the relation 
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and we may compute at once that 
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One must take special care with the implicit function overloading here: in all cases R is defined 
via the partial derivative of its final variable. For reference, we record the Taylor expansion at 
zero of R(x1, …, xl  ) in its final variable: 
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The Recursive Structure of the Polynomials Aj (x1,..., xl ) 

In this section we prove the following result, which was suggested by working out a fair num-
ber of examples via automated symbolic manipulation. The proof is by algebraic calculation 
and induction; we do not know if there is any direct interpretation of the formula as a natural 
recursive counting procedure. 
 
THEOREM. The polynomials Aj (x1, …, xl  ) are given by the relations 
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for all j ≥ 0, and l ≥ 1. 

PROOF. The proof goes by induction on l. For l = 1, the assertion amounts to the pair of formu-
las 
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for all  j ≥ 0, and these in turn may be read directly off the following factorization of F 
(x1,  x2 ) : 
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So assume now that l is greater than 1 and observe that the assertion of the theorem is trivial for 
j = 0. Then using equations 2, 3 and 4, we find 
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and this allows us to bring the induction hypothesis to bear on the first summation of the second 
factor. Thus appealing to the symmetry of the polynomials Aj , we find that 
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What then is the jth coefficient on the right hand side as a polynomial in the indeterminate 
xl + 1 ? We arrange the contributing terms of this formidable-looking product into a triangular 
pattern that begins with the jth-degree term of the first factor times the constant term of the sec-
ond; each succeeding row then represents the contribution that results from decrementing the 
degree of the term drawn from the first factor and incrementing the degree of the reciprocating 
term drawn from the second factor.  
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All is now clear: if we sum the preceding expressions vertically, we have, by comparison of co-
efficients in equation 6, that 
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and, with a final appeal to symmetry, the first equality of theorem is proved. The second then 
follows immediately.  
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Computing the Coefficients 

Suppose that the integer n has factorization given by (r1 ,…, rl ), so that we must compute the 
coefficient of  

lrr
lxx "1

1  

in equation 1. We examine a naïve provisional procedure for computing αn , assuming that the 
components of the factorization structure of n lie in ascending order. The main point of this 
analysis is to motivate a subsequent algorithm. (While the following calculations are trivial 
relative to the underlying symbolic operations, the procedure is impractical insofar as the poly-
nomials grow rapidly in length.) 
 
STEP ONE. Within a pair of nested loops, first over m, then over j, successively compute and 
store the polynomials Aj (x1, …, xm  ) for m = 1,…, l – 1 and j = 0,…, rl . Note that it follows 
from the objective of the calculation and the theorem above that these computations are highly 
modular in two distinct senses:  

(a) The polynomial Aj (x1, …, xm  ) may be computed modulo the monomials 

11
1 ,,1 ++ mrr

mxx …  

(or more precisely, modulo the ideal generated by these monomials in Z[[x1, …, xm]], the pow-
er series ring over the integers generated by x1, …, xm ). 

(b) The sequences in  j for fixed m eventually repeat with periodicity 2 .  

The example below illustrates both principles. Observe that Ar l (x1, …, xl – 1 ) is the only term 
in the expansion of F(x1, …, xl ) that will be needed in the calculation of the coefficient of 

lr
lx when G(x1, …, xl ) is identified with an element in Z[[x1, …, xl – 1]][[ xl]]; that is, when 

G(x1, …, xl ) is identified with a power series in xl over the ring of power series generated by 
its predecessors. 

STEP TWO. Decrementing m from l to 1, calculate the coefficient of the monomial  
 

lm rr
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as a polynomial over Z[x1, …, xm – 1]; again we work modulo the appropriate powers of the 
indeterminates, and at each stage we need only reference the F(x1, …, xm ) and the result of the 
previous iteration. At m = 1, we have the value of αn .  
 
EXAMPLE 2. We sketch the computation of αn for n = 158,838,853,498,109,885,494,697, which 
has factorization type (1, 1, 2, 3,3). The parameters l and rl (respectively, 5 and 3), are small 
enough that the results of the first step of the procedure above may be captured in the following 
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table. (We use the bar notation in the column headers to indicate that the calculations always 
proceed modulo the appropriate powers of the indeterminates.) 
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Note that the third column of the table goes periodic for j = 0, the fourth for j = 1, the fifth for 
j = 3, and the final column a little later.  
 The last entry in the table is the coefficient of 3

5x  in F (x1, …, x5 ), and the fifth column 
bears the coefficients of F (x1, …, x4 ) (as a power series in x4 ) required to compute the coeffi-
cient of the 3

5
3
4 xx -term of the product F (x1, …, x4 )⋅ F (x1, …, x5 ), which in turn will be a pol-

ynomial in x1, x2 and x3. (Remember that all calculations proceed modulo the appropriate 
powers of the participating indeterminates!)  The point is that working to the left in a similar 
manner we eventually reach the coefficient of 3

5
3
4

2
321 xxxxx , as required. 

 
We carry this calculation no further, since a brief examination of the steps required at once re-
veals a better way to organize it, but before stating a less naïve algorithm, let us introduce the 
following simplifying notation: 
 

),,( 1 mjjm xxAa …=  
 
for all  j ≥ 0, m ≥ 0. (When m is zero, the am j revert to integer constants, as above.) Again we 
assume that the components of the factorization type have been sorted as above. 
 
ALGORITHM. For m = l –1 down to 0, use the theorem above to compute pm , the coefficient of  
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expressed formally as a polynomial in xm with coefficients in Z[a m – 1 , j ] j ≥ 0 . The value of 
αn is then nothing more or less than p0. 
 
Note that the periodicities of am j , which are easily anticipated without explicit calculation, 
should be used wherever possible, as illustrated below. We emphasize yet again, moreover, that 
all calculations are modular. 
 One might describe this a just-in-time unpacking of the ),,( 1 mj xxA …  insofar as the underly-
ing variables do not appear explicitly in the symbolic calculations until needed. 
 
EXAMPLE 2, REVISITED AND DISPATCHED. By construction, p4 is the polynomial in x4 over 
Z[a3, j ] j ≥ 0 that serves as the coefficient of 3

5x  in F (x1, …, x5 ). This is just A3(x1, …, x4 ), 
which at this point we should express as follows: 
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Since r4 also has value 3, the part of F (x1, …, x4 ) that matters to our calculation is given by 
the expression 
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whence the coefficient of 3

5
3
4 xx  in the product F (x1, …, x4 )⋅ F (x1, …, x5 ) is 
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Expanding the a3j s in turn, we now have p3: 
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Continuing, since r3 = 2, the part of F (x1,  x2, x3 ) of concern here is  
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One may accordingly compute the coefficient of 3
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x2, x3 )⋅ F (x1, …, x4 )⋅ F (x1, …, x5 ), which when followed by the expansion of the a2j s 
yields 
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Repeating the process, we find next that 

136 11 += xp , 

whence αn = po = 36.  
 Note finally that the numbers are small enough to check this result directly. Factoring 
αn= α(n) through the factorization type of n, one makes the following “semi-recursive” calcula-
tion  
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to find that all is consistent. (This is admittedly tedious and ad hoc, but the two leading values 
of 1 are real lifesavers!) 

The Case k > 2: Some Observations and Questions 

We conclude with two observations and a handful of questions. First note that the Euler product 
that defined the function ζ (2)(s) above may be directly generalized to 
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where the product is taken over decreasing sequences of rational primes of length k. The previ-
ous convergence argument goes through for σ  >  k, to define ζ (k)(s) in a half plane. (One is 
tempted, of course, by the possibility of an analytic continuation of ζ (k)(s) or a functional 
equation.) The associated coefficients αn again depend only on the structure of the prime fac-
torization of n and now more generally count unordered k-tuples of r objects with repetition of 
types. The corresponding generating functions G(x1, …, xl ) will then take the form 
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We have a further factorization as in equation 1, with the F(x1, …, xl ) given this time by 
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The interested reader might ask at this point how much of the program above goes through in 
this more general case. In particular, one wonders if there is an extension of our theorem that is 
also at least theoretically effective in the computation of the αn . 
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